Механизм формирования и характеристики микроструктуры новой нанобейнитной стали
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Wang Y., Chen M., Zhou F., Ma E. High tensile ductility in a nanostructured metal // Nature. 2002. V. 419, Is. 6910. P. 912 – 915.
Popelyukh A. I., Veselov S. V., Munkueva D. D. Properties of steel with nanobainitic structure // Met. Sci. Heat Treat. 2022. V. 63, Is. 11 – 12. P. 655 – 659.
Zhao Y., Topping T., Bingert J. F. et al. High tensile ductility and strength in bulk nanostructured nickel // Adv. Mater. 2008. V. 20. P. 3028 – 3033.
Gao G., Zhang H., Gui X. et al. Enhanced ductility and toughness in an ultrahigh-strength Mn – Si – Cr – C steel: the great potential of ultrafine filmy retained austenite // Acta Mater. 2014. V. 76. P. 425 – 433.
Gao G., Zhang H., Gui X. et al. Enhanced strain hardening capacity in a lean alloy steel treated by a “disturbed” bainitic austempering process // Acta Mater. 2015. V. 101. P. 31 – 39.
Gao G., Guo H., Gui X. et al. Inverted multi-step bainitic austempering process routes: Enhanced strength and ductility // Mater. Sci. Eng. A. 2018. V. A736. 298305.
Caballero F. G., Bhadeshia H. K. D. H., Mawella K. J. A. et al. Very strong low temperature bainite // Mater. Sci. Technol. 2002. V. 18, Is. 3. P. 279 – 284.
Garcia-Mateo C., Caballero F. G., Bhadeshia H. K. D. H. Low temperature bainite // J. Phys. 2003. IV. 112. P. 285 – 288.
Caballero F. G., Bhadeshia H. K. D. H. Very strong bainite // Curr. Opin. Solid State Mater. Sci. 2004. V. 8, Is. 3 – 4. P. 251 – 257.
Garcia-Mateo C., Caballero F. G., Bhadeshia H. K. D. H. Development of hard bainite // ISIJ Int. 2003. V. 43, Is. 8. P. 1238 – 1243.
Wang T. S., Li X. Y., Zhang F. C., Zheng Y. Z. Microstructures and mechanical properties of 60Si2CrVA steel by isothermal transformation at low temperature // Mater. Sci. Eng. 2006. V. A438. P. 1124 – 1127.
Timokhina I. B., Beladi H., Xiong X. Y. et al. Nanoscale microstructural characterization of a nanobainitic steel // Acta Mater. 2011. V. 59, Is. 14. P. 5511 – 5522.
Caballero F. G., Garcia-Mateo C., Miller M. K. Design of novel bainitic steels:moving from ultrafine to nanoscale structures // JOM. 2014. V. 66, Is. 5. P. 747 – 755.
Zhao J., Wang T. S., Lv B., Zhang F. C. Microstructures and mechanical properties of a modified High-C–Cr bearing steel with nano-scaled bainite // Mater. Sci. Eng. 2015. V. A628. P. 327 – 331.
Beladi H., Tari V., Timokhina I. B. et al. On the crystallographic characteristics of nanobainitic steel // Acta Mater. 2017. V. 127. P. 426 – 437.
Zhao J., Guo K., He Y. M. et al. Extremely high strength achievement in medium-C nanobainite steel // Scripta Mater. 2018. V. 152. P. 20 – 23.
Caballero F. G., Miller M. K., Babu S. S., Garcia-Mateo C. Atomic scale observations of bainite transformation in a high carbon high silicon steel // Acta Mater. 2007. V. 55. P. 381 – 390.
Cornide J., Miyamoto G., Caballero F. G. et al. Distribution of dislocations in nanostructured bainite // Solid State Phenom. 2011. V. 172 – 174. P. 117 – 122.
Hodgson P. D., Timokhina I., Xiong X. Y. et al. Understanding of the bainite transformation in a nano-structured bainitic steel // Solid State Phenom. 2011. V. 172 – 174. P. 123 – 128.
He J., Zhao A., Zhi C., Fan H. Acceleration of nanobainite transformation by multi-step ausforming process // Scripta Mater. 2015. V. 107. P. 71 – 74.
Liu Q. S., Zhao X., Zhang X., Wang H. B. Effect of cooling temperature field on formation of shelf-like bainite in high carbon silicon steel // Mater. Sci. Eng. A. 2018. V. A720. P. 176 – 179.
Yang Z., Chu C., Jiang F. et al. Accelerating nanobainite transformation based on a new constructed microstructural predicting model // Mater. Sci. Eng. 2019. V. A748. P. 16 – 20.
Bhadeshia H. K. D. H. Carbon in cubic and tetragonal ferrite // Philos. Mag. (Abingdon). 2013. V. 93. P. 3714 – 3725.
Hulme-Smith C. N., Lonardelli I., Dippel A. C., Bhadeshia H. K. D. H. Experimental evidence for non-cubic bainitic ferrite // Scripta Mater. 2013. V. 69. P. 409 – 412.
Hulme-Smith C. N., Peet M. J., Lonardelli I. et al. Further evidence of tetragonality in bainitic ferrite // Mater. Sci. Technol. 2015. V. 31. P. 254 – 256.
Bhadeshia H. K. D. H., Edmonds D. V. The bainite transformation in a silicon steel // Metall. Trans. 1979. V. 10A, Is. 7. P. 895 – 907.
Chatterjee S., Wang H. S., Yang J. R., Bhadeshia H. K. D. H. Mechanical stabilisation of austenite // Mater. Sci. Technol. 2006. V. 22, Is. 6. P. 641 – 644.
Garcia-Mateo C., Caballero F. G., Miller M. K., Jimйnez J. A. On measurement of carbon content in retained austenite in a nanostructured bainitic steel // J. Mater. Sci. 2012. V. 47, Is. 2. P. 1004 – 1010.
Honeycombe R. W. K., Pickering F. B. Ferrite and bainite in alloy steels // Metall. Trans. 1972. V. 3, Is. 5. P. 1099 – 1112.
Caballero F. G., Yen H. W., Miller M. K. et al. Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels // Acta Mater. 2011. V. 59, Is. 15. P. 6117 – 6123.
Caballero F. G., Miller M. K., Garcia-Mateo C. Influence of transformation temperature on carbide precipitation sequence during lower bainite formation // Mater. Chem. Phys. 2014. V. 146, Is. 1 – 2. P. 50 – 57.
Long X., Zhang F., Yang Z., Lv B. Study on microstructures and properties of carbide-free and carbide-bearing bainitic steels // Mater. Sci. Eng. A. 2018. V. A715. P. 10 – 16.
Goulas C., Kumar A., Mecozzi M. G. Atomic-scale investigations of isothermally formed bainite microstructures in 51CrV4 spring steel // Mater. Charact. 2019. V. 152, Is. 4. P. 67 – 75.
Schiшtz J., Di Tolla F. D., Jacobsen K. W. Softening of nanocrystalline metals at very small grain sizes // Nature. 1998. V. 391. P. 561 – 563.
Schiшtz J., Vegge T., Di Tolla F. D., Jacobsen K. W. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals // Phys. Rev. B. 1999. V. 60. 11971.
Schiшtz J., Jacobsen K. W. A maximum in the strength of nanocrystalline copper // Science. 2003. V. 301. P. 1357 – 1359.
Desai T. G., Millett P., Wolf D. Is diffusion creep the cause for the inverse Hall–Petch effect in nanocrystalline materials? // Mater. Sci. Eng. A. 2008. V. A493, Is. 1 – 2. P. 41 – 47.
Padmanabhan K. A., Dinda G. P., Hahn H., Gleiter H. Inverse Hall-Petch effect and grain boundary sliding controlled flow in nanocrystalline materials // Mater. Sci. Eng. A. 2007. V. A452. P. 462 – 468.
Cao Z. H., Meng X. K. Inverse Hall–Petch effect of hardness in nanocrystalline ta films // Adv. Mat. Res. 2012. V. 378 – 379. P. 575 – 579.
Tejedor R., Edalati K., Benito J. A. et al. High-pressure torsion of iron with various purity levels and validation of Hall–Petch strengthening mechanism // Mater. Sci. Eng. 2019. V. A743. P. 597 – 605.
Putatunda S. K., Martis C., Boileau J. Influence of austempering temperature on the mechanical properties of a low carbon low alloy steel // Mater. Sci. Eng. 2011. V. A528, Is. 15. P. 5053 – 5059.
Zhao J., Lv B., Zhang F. et al. Effects of austempering temperature on bainitic microstructure and mechanical properties of a high-C high-Si steel // Mater. Sci. Eng. 2019. V. A742. P. 179 – 189.
De A. K., Murdock D. C., Mataya M. C. et al. Quantitative measurement of deformation-induced martensite in 304 stainless steel by x-ray diffraction // Scripta Mater. 2004. V. 50, Is. 12. P. 1445 – 1449.
Bramfitt B. L., Speer J. G. A perspective on the morphology of bainite // Metall. Maater. Trans. 1990. V. 21A, Is. 3. P. 817 – 829.
Ko T., Cottrell S. A. The formation of bainite // J. Iron Steel Inst. 1952. V. 172, Is. 3. P. 307 – 313.
Garcia-Mateo C., Bhadeshia H. K. D. H. Nucleation theory for high-carbon bainite // Mater. Sci. Eng. 2004. V. A378, Is. 1 – 2. P. 289 – 292.
Cui T., Liu Q., Zhang X. et al. Characterization of a nanocrystalline structure formed by crystal lattice transformation in a bulk steel material // Metals. 2019. V. 9, Is. 1. P. 3.
Rigsbee J. M., Aaronson H. I. The interfacial structure of the broad faces of ferrite plates // Acta Metall. 1979. V. 27, Is. 3. P. 365 – 376.
Fang H., Wang J., Zheng Y. Formation mechanism of bainitic ferrite and carbide, Metall. Mater. Trans. 1994. V. 25A, Is. 9. P. 2001 – 2007.
Gong W., Tomota Y., Harjo S. et al. Effect of prior martensite on bainite transformation in nanobainite steel // Acta Mater. 2015. V. 85. P. 243 – 249.
Park K. T., Kwon H. J. Interpretation of the strengthening of steel with lower bainite and martensite mixed microstructure // Metals Mater. Int. 2001. V. 7. P. 95 – 99.
Abbaszadeh K., Saghafian H., Kheirandish S. Effect of bainite morphology on mechanical properties of the mixed bainite-martensite microstructure in D6AC steel // J. Mater. Sci. Tech. 2012. V. 28, Is. 4. P. 336 – 342.
Tang Y., Yang H., Huang D. et al. Dual-gradient bainite steel matrix composite fabricated by direct laser deposition // Mater. Letters. 2019. V. 238. P. 210 – 213.
Yokota T., Garcia-Mateo C., Bhadeshia H. K. D. H. Formation of nanostructured steels by phase transformation // Scripta Mater. 2004. V. 51. P. 767 – 770.
DOI: https://doi.org/10.30906/mitom.2024.4.19-28
© Издательский дом «Фолиум», 1998–2024