Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Особенности структурных изменений в закаленной стали 40Х в условиях фрикционного нагружения

К. И. Эмурлаев, В. С. Ложкин, И. А. Батаев

Аннотация


Изучены особенности структурных превращений в стали 40Х в условиях трения, наблюдаемые в процессе operando эксперимента с использованием дифракции синхротронного излучения. Исследовано изменение химической неоднородности мартенсита при фрикционном нагружении и проведен анализ влияния этого явления на дефектность кристаллической решетки мартенсита. Показано, что взаимодействие пары “сплав ВК20 – сталь 40Х” в заданных условиях приводит к окислению железоуглеродистого сплава и, таким образом, способствует установлению режима устойчивого трения

Ключевые слова


мартенсит; фрикционное нагружение; дифракция; перераспределение углерода; окисление.

Полный текст:

PDF

Литература


Гуляев А. П. Металловедение / Учебник для вузов. 6-е изд., перераб. и доп. М.: Металлургия, 1986. 544 с.

Марочник сталей и сплавов / Под общ. ред. В. Г. Сорокина. М.: Машиностроение, 1989. 640 с.

Korshunov L. G., Makarov A. V., Chernenko N. L. Structural aspects of wear resistance of martensitic steels // Physics of Metals and Metallography. 1994. V. 78, Is. 4. P. 128 – 146.

Makarov A. V., Korshunov L. G. Methods for assessing surface cleanliness / In: Developments in surface contamination and cleaning. Elsevier, 2019. P. 23 – 105.

Makarov A. V., Korshunov L., Malygina I., Osintseva A. Effect of laser quenching and subsequent heat treatment on the structure and wear resistance of a cemented steel 20KhN3A // Physics of Metals and Metallography. 2007. V. 103, Is. 5. P. 507 – 518. https://doi.org/10.1134/S0031918X07050110

Holmberg K., Erdemir A. Influence of tribology on global energy consumption, costs and emissions // Friction. 2017. V. 5, Is. 3. P. 263 – 284. https://doi.org/10.1007/S40544- 017-0183-5

Blau P. J. Friction science and technology: From concepts to applications, second edition / In: Friction Science and Technology: From Concepts to Applications, Second Edition, CRC Press, 2008. 432 p. https://doi.org/10.1201/9781420054101

Rigney D., Chen L. H., Naylor M., Rosenfield A. Wear processes in sliding systems // Wear. 1984. V. 100, Is. 1 – 3. P. 195 – 219. https://doi.org/10.1016/0043- 1648%2884%2990013-9.

Emurlaev K., Bataev I., Burov V. et al. Structural evolution of martensitic steel during dry sliding friction studied with synchrotron radiation // Journal of Nondestructive Evaluation. 2020. V. 39, Is. 3. P. 1 – 13. https://doi.org/10.1007/s10921- 020-00713-1.

Bataev A., Burov V., Nikulina A. et al. A novel device for quasi in situ studies of materials microstructure during friction // Materials Performance and Characterization. 2018. V. 7, Is. 3. P. 1 – 11. https://doi.org/10.1520/MPC20170065.

Bataev A. A., Burov S. V., Bataev I. A. et al. Stability analysis of the copper surface layer structure in the process of sliding friction by the method of diffraction analysis using synchrotron radiation // Russian Physics Journal. 2016. V. 59, Is. 2. P. 314 – 316. https://doi.org/10.1007/S11182-016-0773-0.

Bataev I. A., Lazurenko D. V., Bataev A. A. et al. A novel operando approach to analyze the structural evolution of metallic materials during friction with application of synchrotron radiation // Acta Materialia. 2020. V. 196. P. 355 – 369. https://doi.org/10.1016/j.actamat.2020.06.049.

Ashby M. F., Abulawi J., Kong H. S. Temperature maps for frictional heating in dry sliding // Tribology Transactions. 1991. V. 34, Is. 4. P. 577 – 587. https://doi.org/10.1080/ 10402009108982074.

Burov V., Bataev I., Smirnov A. In-situ study of structural evolution of tribological materials using synchrotron radiation // MATEC Web Conf. 2017. V. 129. P. 1 – 4. https://doi.org/ 10.1051/MATECCONF%2F201712902024.

Ungбr T., Borbйly A. The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis // Applied Physics Letters. 1996. V. 69, Is. 21. P. 3173 – 3175. https://doi.org/10.1063/1.117951.

Leineweber A., Mittemeijer E. J. Diffraction line broadening due to lattice-parameter variations caused by a spatially varying scalar variable: its orientation dependence caused by locally varying nitrogen content in e-FeN 0.433 // Journal of Applied Crystallography. 2004. V. 37, Is. 1. P. 123 – 135. https://doi.org/10.1107/S0021889803026906.

Aksenova K. V., Gromov V. E., Ivanov Y. F. et al. Redistribution of carbon in the deformation of steel with bainite and martensite structures // Steel Translation. 2017. V. 47. P. 445 – 448. https://doi.org/10.3103/S0967091217070026.

Чирков П. В. Компьютерное моделирование перераспределения углерода в решетке мартенсита Fe – C при выдержке и нагружении: дис. ... канд. физ.-мат. наук: 01.04.07 / Челябинск, 2017. 115 с.

Cottrell A. H., Bilby B. A. Dislocation theory of yielding and strain ageing of iron // Proceedings of the Physical Society. Section A. 1949. V. 62, Is. 1. P. 49 – 62. https://doi.org/ 10.1088/0370-1298/62/1/308.

Korshunov L. G., Makarov A. V., Schastlivtsev V. M. et al. Structure and wear-resistance of steel U8 after laser treatment // Physics of Metals and Metallography. 1988. V. 66, Is. 5. P. 948 – 957.




DOI: https://doi.org/10.30906/mitom.2023.3.60-64


© Издательский дом «Фолиум», 1998–2024