Влияние легирующих элементов и технологических параметров аустемперинга на структуру и механические свойства чугуна с шаровидным графитом (ADI)
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Janowak J., Gundlach R. Development of a ductile iron for commercial austempering // Trans. Amer. F. 1983. V. 91. P. 377 – 388.
Yang J., Putatunda S. K. Effect of microstructure on abrasive wear behaviour of austempered ductile iron (ADI) processed by a novel two-step austempering process // Mater. Sci. Eng. A. 2005. V. 406A. P. 217 – 228.
Yang J., Putatunda S. K. Improvement in strength and toughness of austempered ductile cast iron by a novel two-step austempering process // Mater. Des. 2004. V. 25. P. 219 – 230.
Putatunda S. K. Development of austempered ductile cast iron (ADI) with simultaneous high yield strength and fracture toughness by a novel two-step austempering process // Mater. Sci. Eng. A. 2001. V. 315A. P. 70 – 80.
Rajnovic D., Eric O., Sidjanin L. The standard processing window of alloyed ADI materials // Kovove Mater. 2012. V. 50, Is. 3. P. 199 – 208.
Boneti L. L. T., Hupalo M. F., Vurobi Junior S., Rosário A. M. Influence of casting heterogeneities on microstructure and mechanical properties of austempered ductile iron (ADI) // Matéria (Rio de Janeiro). 2017. V. 22, Is. 03. E11858.
Keough J. R., Hayrynen K. L. Automotive applications of austempered ductile iron (ADI): A critical review // SAE Transactions. 2000. V. 109. P. 344 – 354.
Trudel A., Gagne M. Effect of composition and heat treatment parameters on the characteristics of austempered ductile irons // Can. Metall. Quart. 1997. V. 36. P. 289 – 298.
Voigt R. C., Loper C. Austempered ductile iron — process control and quality assurance // J. Mater. Eng. Perform. 2013. V. 22. P. 2776 – 2794.
Meier L., Hofmann M., Saal P. et al. In-situ measurement of phase transformation kinetics in austempered ductile iron // Mater. Charact. 2013. V. 85. P. 124 – 133.
Myszka D., Wieczorek A. An assessment of the applicability of austempered ductile iron containing Mo and Ni for mining machines parts // Arch. Metall. Mater. 2013. V. 58, Is. 3. P. 953 – 956.
Li X., Wagner J. N., Stark A. et al. Carbon redistribution process in austempered ductile iron (ADI) during heat treatment — APT and synchrotron diffraction study // Metals. 2019. V. 9. 789.
Lefevre J., Hayrynen K. L. Austempered materials for powertrain applications // J. Mater. Eng. Perform. 2013. V. 22. P. 1914 – 1922.
Sellamuthu P., Samuel D., Dinakaran D. et al. Austempered ductile iron (ADI): influence of austempering temperature on microstructure, mechanical and wear properties and energy consumption // Metals. 2018. V. 8. P. 53.
Rao P. P., Putatunda S. K. Influence of microstructure on fracture toughness of austempered ductile iron // Metall. Mater. Trans. A. 1997. V. 28, Is. 7. P. 1457 – 1470.
Konca E., Tur K., Koç E. Effects of alloying elements (Mo, Ni, and Cu) on the austemperability of GGG-60 ductile cast iron // Metals. 2017. V. 7. P. 320.
Yazdani S., Elliott R. Influence of molybdenum on austempering behaviour of ductile iron. Part 1 — Austempering kinetics and mechanical properties of ductile iron containing 0.13 % Mo // Mater. Sci. Tech. Ser. 1999. V. 15, Is. 5. P. 531 – 540.
Tanaka Y., Kage H. Development and application of austempered spheroidal graphite cast iron // Mater. Trans., JIM. 1992. V. 33, Is. 6. P. 543 – 557.
Kovacs B. Development of austempered ductile iron (ADI) for automobile crankshafts // Journal of Heat Treating. 1987. V. 5, Is. 1. P. 55 – 60.
Sohi M. H., Ahmadabadi M. N., Vahdat A. B. The role of austempering parameters on the structure and mechanical properties of heavy section ADI // J. Mater. Process. Technol. 2004. V. 153 – 154. P. 203 – 208.
Voigt R. Austempered ductile iron — processing and properties // Cast Metals. 1989. V. 2, Is. 2. P. 71 – 93.
Benam A. S. Effect of alloying elements on austempered ductile iron (ADI) properties and its process // China Foundry. 2015. V. 12. P. 54 – 70.
Batra U., Ray S., Prabhakar S. R. The influence of nickel and copper on the austempering of ductile iron // J. Mater. Eng. Perform. 2004. V. 13. P. 64 – 68.
Batra U., Ray S., Prabhakar S. Impact properties of copper-alloyed and nickel-copper alloyed ADI // J. Mater. Eng. Perform. 2007. V. 16. P. 485 – 489.
McFadden S., Mishra R., Valiev R. et al. Low-temperature superplasticity in nanostructured nickel and metal alloys // Nature. 1999. V. 398. P. 684 – 686.
Basso A., Martinez R., Sikora J. Influence of section size on dual phase ADI microstructure and properties: comparison with fully ferritic and fully ausferritic matrices // Mater. Sci. Tech. Ser. 2009. V. 25. P. 1271 – 1278.
Liu J., Elliott R. The influence of cast structure of the austempering of ductile iron // Int. J. Cast Met. Res. 1999. V. 11. P. 407 – 412.
Erić O., Jovanović M., Šid L. et al. The austempering study of alloyed ductile iron // Mater. Des. 2006. V. 27, Is. 7. P. 617 – 622.
Roberts C. S. Effect of carbon on the volume fractions and lattice parameters of retained austenite and martensite // JOM. 1953. V. 5, Is. 2. P. 203 – 204.
Cullity B. D. Elements of x-ray Diffraction. Massachusetts: Addison-Wesley Publishing, 1956. 534 p.
Erturk S. Ö., Ahmet O. Investigation on the production of solution strenghted ductile iron part grade 500-14 // Bayburt Üniversitesi Fen Bilimleri Dergisi. 2020. V. 3. P. 106 – 109.
DOI: https://doi.org/10.30906/mitom.2023.4.3-12
© Издательский дом «Фолиум», 1998–2024