Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Размещение атомов примеси внедрения в кристаллической решетке аустенита железа и механизм их диффузионного перескока

М. Ю. Семенов, В. С. Крапошин, В. Арестов, В. А. Панчо-Рамирес, А. Л. Талис

Аннотация


Разработана модель размещения атомов примеси внедрения в аустените железа, в соответствии с которой при введении атома примеси внедрения происходит превращение регулярной плотной упаковки (ГП или ГЦК) из октаэдров и тетраэдров в локальную призматическую упаковку типа цементитной путем переброски диагоналей (diagonal flipping). Углерод растворяется в кристаллической структуре аустенита железа как центрированный пятиатомный тетраэдрический кластер, который является фрагментом упаковки углерода в кристаллической структуре алмаза. Тогда при диффузии атома примеси в соседнем периоде решетки происходит преобразование в призму, а призматическая упаковка в исходном месте нахождения примесного атома обратно реконструируется в обычную междоузельную пустоту. В целях проверки адекватности предложенной модели выполнены теоретические расчеты энтальпии активации диффузии углерода и азота в аустените, согласно которым энтальпия активации соответственно равна: 149 ± 20 и 155 ± 20 кДж/моль, что удовлетворительно соотносится с экспериментальными данными, приведенными в литературе: 153 и 169 кДж/моль.

Ключевые слова


аустенит; растворение углерода; цементит; энтальпия активации; диффузия; кластер углерода

Полный текст:

PDF

Литература


Cordero B., Gomez V., Platero-Prats A. E. et al. Covalent radii revisited // Dalton Transactions. 2008. No. 21. P. 2832 – 2838. https://doi.org/10.1039/B801115J.

Butler B. D., Cohen J. B. The location of interstitial carbon in austenite // J. Phys. I France. 1992. V. 2. P. 1059 – 1065. https://doi.org/10.1051/jp1:1992195.

Pyykkö P., Atsumi M. Molecular double-bond covalent radii for elements Li–E112 // Chem. Eur. J. 2009. V. 15. P. 12770 – 12779. https://doi.org/10.1002/chem.200901472.

Jack K. H. The iron-nitrogen system: the preparation and the crystal structures of nitrogen-austenite (g) and nitrogen-mar¬tensite (aў ) // Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1951. V. 208, No. 1093. P. 200 – 215. https://doi.org/10.1098/rspa.1951.0154.

Martin J. W. Precipitation hardening (2nd edition). Oxford, Butterworth-Heinemann, 1998. 219 p.

Bhadeshia H. K. D. H., David S. A., Vitek J. M., Reed R. W. Stress induced transformation to bainite in Fe – Cr – Mo – C pressure vessel steel // Mater. Sci. Technol. 1991. V. 7. P. 686 – 698. https://doi.org/10.1179/mst.1991.7.8.686.

Kojima R., Susa M. Melting of thin gFe – C films having (100), (110) and (111) surfaces in terms of molecular dynamics simulation // Sci. Technol. Adv. Mater. 2004. V. 5. P. 677 – 682. https://doi.org/10.1016/j.stam.2004.03.011.

Reeber R. R., Wang K. Thermal expansion, molar volume and specific heat of diamond from 0 to 3000 K // J. Electron. Mater. 1996. V. 25. P. 63 – 67. https://doi.org/10.1007/BF02666175.

Kraposhin V. S., Talis A. L., Samoylovitch M. I. Axial (helical) substructures determined by the root lattice E8 as generating clusters of the condensed phases // Journal of Non-Crystalline Solids. 2007. V. 353. P. 3279 – 3284. https://doi.org/ 10.1016/j.jnoncrysol.2007.05.065.

Kraposhin V. S., Simich-Lafitskiy N. D., Talis A. L. et al. Formation of the cementite crystal in austenite by transformation of triangulated polyhedral // Acta Crystallographica B. Struct. Sci. Cryst. Eng. Mater. 2019. V. B75. P. 325 – 332. https://doi.org/10.1107/S205252061900324X.

Talis A. L., Kraposhin V. S., Kondrat’ev S. Y. et al. Non-crystallographic symmetry of liquid metal, flat crystallographic faults and polymorph transformation of the M7C3 carbide // Acta Crystallographica. Section A: Foundations and Advances. 2017. V. A73. Part 3. P. 209 – 217. https://doi.org/ 10.1107/S2053273317000936.

Pettifor D. / in: Physical Metallurgy, Cahn R. W., Haasen P. (eds.). Amsterdam: Elsevier, 1996. V. 1. P. 47 – 133.

Desai P. D. Thermodynamic properties of iron and silicon // J. of Phys. and Chemical Reference Data. 1986. V. 15, No. 3. P. 967 – 983. https://doi.org/10.1063/1.555761.

Ledbetter H. M., Reed R. P. Elastic properties of metals and alloys. I. Iron, nickel, and iron- nickel alloys // J. of Phys. and Chemical Reference Data. 1973. V. 2, No. 3. P. 531 – 618. https://doi.org/10.1063/1.3253127.

Wits J. J., Kop T. A., van Leeuwen Y. et al. A study on the austenite-to-ferrite phase transformation in binary substitutional iron alloys // Mater. Sci. Eng. A. 2000. V. 283, No. 1 – 2. P. 234 – 241. https://doi.org/10.1016/S0921-5093(00)00735-8.

Hillert M., Höglund L. Mobility of a/g phase interfaces in Fe alloys // Scr. Mater. 2006. V. 54. P. 1259 – 1263. https://doi.org/10.1016/j.scriptamat.2005.12.023.

Zener C. // In: Imperfections in Nearly Perfect Crystals. Shockley W., Holomon J. H., Maurer R., Seitz F. (eds.). New York: John Wiley & Sons, 1952. P. 289 – 314.

Le Claire A. D. Diffusion in solid metals and alloys. Ed. H. Mehrer. Landolt-Bornstein new series. Springer-Verlag, 1990. V. III(26). P. 471 – 503.

Gavriljuk V. G. Carbon and nitrogen in iron-based austenite and martensite: An attempt at comparative analysis // J. Phys. 2003. V. 112. P. 51 – 59. https://doi.org/10.1051/jp4:2003839.

Fall I., Génin J. M. Mössbauer analysis of Fe – N austenites // Hyperfine Interact. 1992. V. 69. P. 513 – 516. https://doi.org/ 10.1007/BF02401877.

Bauer P., Uwakweh O. N. C., Genin J. M. R. Cems study of the carbon distribution in austenite // Hyperfine Interact. 1998. V. 41. P. 555 – 558. https://doi.org/10.1007/ BF02400451.

De Cristofaro N., Kaplow R. Interstitial atom configurations in stable and metastable Fe – N and Fe – C solid solutions // Metall. Mater. Trans. A. 1977. V. 8. P. 35 – 44. https:// doi.org/10.1007/BF02677261.

Могутнов Б. М., Томилин И. А., Шварцман Л. А. Термодинамика железоуглеродистых сплавов. М.: Металлургия, 1972. 328 с.

Schenck H., Kaiser H. Untersuchungen über die Aktivität des Kohlenstoffs in kristallisiertenbinären und ternären Eisen- Koh¬lenstoff-Legierungen // Arch. Eisenhüttenw. 1960. Bd. 31. S. 227 – 235. https://doi.org/10.1002/srin.196002854.

Томилин И. А. О связи термодинамических свойств аустенита с его структурой // Доклады Академии наук СССР. Сер. Хим. 1965. № 162. С. 384 – 387.

Schubert K. Kristallstrukturen Zweikomponentiger Phasen. Berlin: Springer Verlag, 1964. 432 s.

Fornasini M. L., Pani M. Ba5Ga6: a phase with octahedral clusters of gallium // J. Alloys Compd. 1994. V. 205. P. 179 – 181. https://doi.org/10.1016/0925-8388(94)90786-2.




DOI: https://doi.org/10.30906/mitom.2023.5.10-17


© Издательский дом «Фолиум», 1998–2024