Влияние термической обработки на фазовый состав и микротвердость двухфазного сплава Ti – 22Al – 25Nb
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
He D., Li L., Guo W. et al. Improvement in oxidation resistance of Ti2AlNb alloys at high temperatures by laser shock peening // Corros. Sci. 2021. V. 184. 109364.
Goyal K., Sardana N. Mechanical properties of the Ti2AlNb intermetallic: a review // Trans. Indian Inst. Met. 2021. V. 74. P. 1839 – 1853.
Avinash D., Leo Kumar S. P. Investigations on surface-integrity and mechanical properties of biocompatible grade Ti – 6Al – 7Nb alloy // Mater. Technol. (NYNY). 2021. V. 37, Is. 1. P. 1 – 9.
Senkevich K. S., Pozhoga O. Z., Kudryavtsev E. A., Zasyp¬kin V. V. The effect of hydrogenation on the fracture of Ti2AlNb-based alloy during ball milling // J. Alloys Compd. 2022. V. 902. 163794.
Sun Y., Zhang H., Wan Z.-p. et al. Establishment of a novel constitutive model considering dynamic recrystallization behavior of Ti – 22Al – 25Nb alloy during hot deformation // T. Nonferr. Metal. Soc. 2019. V. 29. P. 546 – 557.
Shao L., Wu S., Datye A. et al. Microstructure and mechanical properties of ultrasonic pulse frequency tungsten inert gas welded Ti – 22Al – 25Nb (at.%) alloy butt joint // J. Mater. Process. Technol. 2018. V. 259. P. 416 – 423.
Longchuan Y., Yan S., Yulei D., Wenhe L. Structural features and mechanical properties of as-cast Ti – 22Al – 25Nb alloy // Rare Metal Mat. Eng. 2020. V. 49. P. 42 – 47.
Wang W., Zeng W., Xue C. et al. Microstructural evolution, creep, and tensile behavior of a Ti – 22Al – 25Nb (at.%) ortho¬rhombic alloy // Mater. Sci. Eng. A. 2014. V. 603A. P. 176 – 184.
Shao B., Shan D., Guo B., Zong Y. Plastic deformation mechanism and interaction of B2, a2, and O phases in Ti 22Al 25Nb alloy at room temperature // Int. J. Plast. 2019. V. 113. P. 18 – 34.
Wang W., Zeng W., Xue C. et al. Quantitative analysis of the effect of heat treatment on microstructural evolution and micro¬hardness of an isothermally forged Ti – 22Al – 25Nb (at.%) orthorhombic alloy // Intermetallics. 2014. V. 45. P. 29 – 37.
Shao L., Wu S., Zhao S. et al. Evolution of microstructure and microhardness of the weld simulated heat-affected zone of Ti – 22Al – 25Nb (at.%) alloy with continuous cooling rate // J. Alloys Compd. 2018. V. 744. P. 487 – 492.
Chen J.-R., Tsai W.-T. In situ corrosion monitoring of Ti – 6Al – 4V alloy in H2SO4 /HCl mixed solution using electrochemical AFM // Electrochim. Acta. 2011. V. 56. P. 1746 – 1751.
Xue C., Zeng W., Xu B. et al. B2 grain growth and particle pinning effect of Ti – 22Al – 25Nb orthorhombic intermetallic alloy during heating process // Intermetallics. 2012. V. 29. P. 41 – 47.
Dey S. R., Suwas S., Fundenberger J. J., Ray R. K. Evolution of crystallographic texture and microstructure in the ortho¬rhombic phase of a two-phase alloy Ti – 22Al – 25Nb // Intermetallics. 2009. V. 17. P. 622 – 633.
Esin V. A., Mallick R., Dadé M. et al. Combined synchrotron x-ray diffraction, dilatometry and electrical resistivity in situ study of phase transformations in a Ti2AlNb alloy // Mater. Charact. 2020. V. 169. P. 110654.
Zhang P., Zeng W., Jia R. et al. Tensile behavior and deformation mechanism for Ti – 22Al – 25Nb alloy with lamellar O microstructures // Mater. Sci. Eng. A. 2021. V. 803A. P. 140492.
Germann L., Banerjee D., Guédou J. Y., Strudel J. L. Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide // Intermetallics. 2005. V. 13. P. 920 – 924.
Wang Y. X., Zhang K. F., Li B. Y. Microstructure and high temperature tensile properties of Ti22Al25Nb alloy prepared by reactive sintering with element powders // Mater. Sci. Eng. A. 2014. V. 608 A. P. 229 – 233.
Boehlert C. J. Part III. The tensile behavior of Ti – Al – Nb O + Bcc orthorhombic alloys // Metall. Mater. Trans. 2001. V. A32. P. 1977 – 1988.
Zhang H., Yan N., Liang H., Liu Y. Phase transformation and microstructure control of Ti2AlNb-based alloys: a review // J. Mater. Sci. Technol. 2021. V. 80. P. 203 – 216.
Bu Z. Q., Zhang Y. G., Yang L. et al. Effect of cooling rate on phase transformation in Ti2AlNb alloy // J. Alloys Compd. 2022. V. 893. 162364.
Li D., Hu S., Shen J. et al. Microstructure and mechanical properties of laser-welded joints of Ti – 22Al – 25Nb/TA15 dissimilar titanium alloys // J. Mater. Eng. Perform. 2016. V. 25. P. 1880 – 1888.
Zhang H., Yang M., Xu Y. et al. Constitutive behavior and hot workability of a hot isostatic pressed Ti – 22Al – 25Nb alloy during hot compression // J. Mater. Eng. Perform. 2019. V. 28. P. 6816 – 6826.
Leyens C. Environmental effects on orthorhombic alloy Ti – 22Al – 25Nb in air between 650 and 1000 °C // Oxid. Met. 2000. V. 54. P. 475 – 503.
DOI: https://doi.org/10.30906/mitom.2023.5.42-46
© Издательский дом «Фолиум», 1998–2024