Анализ кинетики изотермического бейнитного превращения в легированных сталях
Аннотация
Проведено дилатометрическое исследование образования бейнита при изотермической выдержке в промышленных и экспериментальных легированных сталях разного состава. Рассмотрено влияние условий охлаждения до температуры изотермической закалки на последующий процесс бейнитного превращения. Описана экспериментальная кинетика образования бейнита при помощи уравнения Остина-Риккета (ОР). Установлена температурная зависимость параметров n и ln (k) уравнения ОР, а также их линейная взаимосвязь. Показано, что стали определенных классов имеют различия в зависимости n = f[ln (k)], связанные, вероятно, с разной устойчивостью переохлажденного аустенита. Установлено, что в ряде случаев кинетика изотермического бейнитного превращения может быть наиболее адекватно описана уравнением Колмогорова-Джонсона-Мела-Аврами (КДМА). Предложена методика применения дифференциального уравнения, обобщающего уравнения ОР и КДМА, которая позволяет получить наиболее точное описание кинетики образования бейнита.
Ключевые слова
Полный текст:
PDFЛитература
Davenport E. S., Bain E. C. Transformation of austenite at constant subcritical temperatures // Metallurgical Transactions. 1970. V. 1. P. 3503 – 3530. DOI: 10.1007/BF03037892
Fielding L. C. D. The bainite controversy // Materials Science and Technology. 2013. V. 29, No. 4. P. 383 – 399. DOI: 10.1179/1743284712Y.0000000157
Bhadeshia H. K. D. H. Bainite in Steels. Theory and Practice, Third Edition. USA: CRC Press, 2015. 616 p.
Phase Transformations in Steels. Fundamentals and Diffusion-Controlled Transformations / Ed. E. Pereloma, D. V. Edmonds. UK: Woodhead Publishing Limited, 2012. 634 p.
Christian J. W. The Theory of Transformations in Metals and Alloys. UK: Elsevier Ltd., 2002. 1168 p.
Bhadeshia H. K. D. H., Honeycombe R. Steels: Microstructure and Properties. UK: Elsevier Ltd., 2017. 461 p.
Hehemann R. F., Kinsman K. R., Aaronson H. I. A debate on the bainite reaction // Metallurgical and Materials Transactions B. 1972. V. 3. P. 1077 – 1094. DOI: 10.1007/BF02642439
Bramfitt B. L., Speer J. G. A perspective on the morphology of bainite // Metallurgical and Materials Transactions A. 1990. V. 21. P. 817 – 829. DOI: 10.1007/BF02656565
Hajizad O., Kumar A., Li Z. et al. Influence of microstructure on mechanical properties of bainitic steels in railway applications // Metals. 2019. V. 9(7). P. 778. DOI: 10.3390/ met9070778
Georgiev M. N., Simeonova T. V. Railroad rails from bainitic steel // Metal Science and Heat Treatment. 2018. V. 60. P. 464 – 470. DOI: 10.1007/s11041-018-0302-6
Pyshmintsev I. Yu., Struin A. O., Gervasyev A. M. et al. Effect of bainite crystallographic texture on failure of pipe steel sheets made by controlled thermomechanical treatment // Metallurgist. 2016. V. 60. P. 405 – 412. DOI: 10.1007/ s11015-016-0306-7
Yang J., Kim D. W., Lee S. et al. Effects of granular bainite and polygonal ferrite on yield point phenomenon in API X65 line-pipe steels // Materials Science and Engineering A. 2022. V. 840. 143006. DOI: 10.1016/j.msea.2022.143006
Хлусова Е. И., Сыч О. В., Орлов В. В. Хладостойкие стали. Структура, свойства, технологии // Физика металлов и металловедение. 2021. T. 122, № 6. С. 621 – 657. DOI: 10.31857/S0015323021060048
Maisuradze M. V., Yudin Yu. V., Lebedev D. I. Thermal strengthening of large parts made from high-strength sparingly doped steel in air // Steel in Translation. 2020. V. 50. P. 356 – 362. DOI: 10.3103/S0967091220050083
Madadi M., Yeganeh M., Eskandari M. Nano-steels in the automotive industry / In: Nanotechnology in the Automotive Industry. UK: Elsevier Inc. 2022. P. 287 – 313. DOI: 10.1016/B978-0-323-90524-4.00015-3
Automotive Steels. Design, Metallurgy, Processing and Applications / Ed.: R. Rana, S. B. Singh. UK: Elsevier Ltd., 2017. 469 p.
Broek C. T., Singh H., Hillebrecht M. Lightweight design for the future steel vehicle // ATZ Worldwide. 2012. V. 114. P. 4 – 11. DOI: 10.1007/s38311-012-0203-z
Liu Y., Ye H., Yao Y., Zhang L. Research on microstructure and properties of automobile body steel and its development trend // IOP Conference Series: Materials Science and Engineering. 2018. V. 382, No. 2. 022045. DOI: 10.1088/ 1757-899X/382/2/022045
Song W., Lei M., Wan M., Huang C. Continuous cooling transformation behaviour and bainite transformation kinetics of 23CrNi3Mo carburised steel // Metals. 2021. V. 11(1). P. 48. DOI: 10.3390/met11010048
Jiang M., Chen L.-N., He J. et al. Effect of controlled rolling/controlled cooling parameters on microstructure and mechanical properties of the novel pipeline steel // Advances in Manufacturing. 2014. V. 2. P. 265 – 274. DOI: 10.1007/ s40436-014-0084-z
Rodrigues P. C. M., Pereloma E. V., Santos D. B. Mechanical properties of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling // Materials Science and Engineering A. 2000. V. 283, No. 1 – 2. P. 136 – 143. DOI: 10.1016/S0921-5093(99)00795-9
Bhole S. D., Friedman A. Steel wire patenting: thermal and metallurgical comparison between quenching in lead and quenching in a fluidised bed // International Heat Treatment and Surface Engineering. 2010. V. 4, No. 4. P. 152 – 155. DOI: 10.1179/174951410X12712449937360
Wang Y., Liu B., Pan Q. et al. Effect of Austempering on mechanical properties of Nb/V microalloyed bainitic bearing steel // Crystals. 2022. V. 12. P. 1001. DOI: 10.3390/ cryst12071001
Carpio M., Calvo J., García O. et al. Heat treatment design for a QP steel: Effect of partitioning temperature // Metals. 2021. V. 11(7). 1136. DOI: 10.3390/met11071136
Babasafari Z., Pan A. V., Pahlevani F. et al. Effects of austenizing temperature, cooling rate and isothermal temperature on overall phase transformation characteristics in high carbon steel // Journal of Materials Research and Technology. 2020. V. 9, No. 6. P. 15286 – 15297. DOI: 10.1016/j.jmrt.2020.10.071
Maisuradze M. V., Ryzhkov M. A. Improving the impact toughness of the HY-TUF steel by austempering // AIP Conference Proceedings. 2018. V. 2053. 040054. DOI: 10.1063/1.5084492
Maisuradze M. V., Ryzhkov M. A. Thermal stabilization of austenite during quenching and partitioning of austenite for automotive steels // Metallurgist. 2018. V. 62. P. 337 – 347. DOI: 10.1007/s11015-018-0666-2
Santofimia M. J., Caballero F. G., Capdevila C. et al. New model for the overall transformation kinetics of bainite. Part 1: the model // Materials Transactions. 2006. V. 47, No. 10. P. 2465 – 2472. DOI: 10.2320/matertrans.47.2465
Zhang T., Yu H., Li Z., Kou S. et al. Progress on effects of alloying elements on bainite formation and strength and toughness of high strength steel weld metal // Materials Research Express. 2021. V. 8, No. 3. 032002. DOI: 10.1088/ 2053-1591/abea58
Sourmail T., Smanio V. Influence of cobalt on bainite formation kinetics in 1 pct C steel // Metallurgical and Materials Transactions A. 2013. V. 44. P. 1975 – 1978. DOI: 10.1007/s11661-013-1656-4
Morawiec M., Skowronek A., Kozłowska A. et al. Effect of prior martensite formation on the bainite transformation kinetics in high-strength 3 % Mn multiphase steel // Journal of thermal analysis and calorimetry. 2023. V. 148. P. 1365. DOI: 10.1007/s10973-22-1729-
Babasafari Z., Pan A. V., Pahlevani F. et al. Kinetics of bainite transformation in multiphase high carbon low-silicon steel with and without pre-existing martensite // Metals. 2022. V. 12(11). 1969. DOI: 10.3390/met12111969
Łukaszewicz G., Wasiak K., Skołek E. K. et al. Influence of intermediate annealing treatment on the kinetics of bainitic transformation in X37CrMoV5-1 steel // Materials. 2021. V. 14(16). P. 4411. DOI: 10.3390/ma14164411
Starink M. J. Kinetic equations for diffusion-controlled precipitation reactions // Journal of Materials Science. 1997. V. 32. P. 4061 – 4070. DOI: 10.1023/A:1018649823542
Zhu J. G., Sun X., Barber G. C. et al. Bainite transformation-kinetics-microstructure characterization of austempered 4140 steel // Metals. 2020. V. 10(2). P. 236. DOI: 10.3390/ met10020236
Avrami M. Kinetics of phase change. I. General theory // Journal of Chemical Physics. 1939. V. 7, No. 12. P. 1103 – 1132. DOI: 10.1063/1.1750380
Cai J., Liu R. Weibull mixture model for modeling nonisothermal kinetics of thermally stimulated solid-state reactions: Application to simulated and real kinetic conversion data // Journal of Physical Chemistry B. 2007. V. 111, No. 36. P. 10681 – 10686. DOI: 10.1021/jp0737092
Yudin Yu. V., Maisuradze M. V., Kuklina A. A. Describing the isothermal bainitic transformation in structural steels by a logistical function // Steel in Translation. 2017. V. 47, No. 3. P. 213 – 218. DOI: 10.3103/S0967091217030160
Kop T. A., Sietsma J., Van Der Zwaag S. Dilatometric analysis of phase transformations in hypo-eutectoid steels // Journal of Materials Science. 2001. V. 36. P. 519 – 526. DOI: 10.1023/A:1004805402404
Maisuradze M. V., Yudin Yu. V., Kuklina A. A. Increase in impact strength during bainite structure formation in HY-TUF high-strength steel // Metallurgist. 2019. V. 63. P. 849 – 859. DOI: 10.1007/s11015-019-00899-4
Maisuradze M. V., Yudin Yu. V., Kuklina A. A. A Novel approach for analytical description of the isothermal bainite transformation in alloyed steels // Materials Performance and Characterization. 2018. V. 8, No. 2. P. 80 – 95. DOI: 10.1520/MPC20170168
Khan S. A., Bhadeshia H. K. D. H. The Bainite transformation in chemically heterogeneous 300M high-strength steel // Metallurgical Transactions A. 1990. V. 21. P. 859 – 875. DOI: 10.1007/BF02656570
Kuklina A. A., Maisuradze M. V., Yudin Yu. V. Analytical description of the bainite transformation kinetics in steels 300M and D6AC // Materials Science Forum. 2017. V. 907. P. 31 – 37. DOI:10.4028/www.scientific.net/MSF.907.31
DOI: https://doi.org/10.30906/mitom.2023.8.15-25
© Издательский дом «Фолиум», 1998–2024