Эволюция градиентной структуры при термической обработке метастабильной аустенитной нержавеющей стали, подвергнутой холодной радиальной ковке
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Beddoes J., Parr J. G. Introduction to Stainless Steels. 3rd ed. OH, USA: ASM International, Materials Park, 1999. 315 p.
Lo K. H., Shek C. H., Lai J. K. L. Recent developments in stainless steels // Mater. Sci. Eng. R Reports. 2009. V. 65, No. 4 – 6. P. 39 – 104.
Shakhova I. et al. Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel // Mater. Sci. Eng. A. 2012. V. 545. P. 176 – 186.
Ueno H. et al. Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel // Acta Mater. 2011. V. 59, No. 18. P. 7060 – 7069.
Üçok I., Ando T., Grant N. J. Property enhancement in Type 316L stainless steel by spray forming // Mater. Sci. Eng. A. 1991. V. 133, No. C. P. 284 – 287.
Panov D. et al. Metastable austenitic steel structure and mechanical properties evolution in the process of cold radial forging // Materials (Basel). 2019. V. 12, No. 2058.
Fang T. H. et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper // Science. 2011. V. 331, No. 6024. P. 1587 – 1590.
Wu X. L. et al. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility // Acta Mater. 2016. V. 112. P. 337 – 346.
Gu J. et al. Effects of grain size on the microstructures and mechanical properties of 304 austenitic steel processed by torsional deformation // Micron. 2018. V. 105. P. 93 – 97.
Huang H. W. et al. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer // Acta Mater. 2015. V. 87. P. 150 – 160.
Lei Y. B. et al. Enhanced mechanical properties and corrosion resistance of 316L stainless steel by pre-forming a gradient nanostructured surface layer and annealing // Acta Mater. 2021. V. 208.
Zeng Z. et al. Gradient plasticity in gradient nano-grained metals // Extrem. Mech. Lett. Elsevier Ltd, 2016. V. 8. P. 213 – 219.
Panov D. O. et al. Excellent strength-toughness synergy in metastable austenitic stainless steel due to gradient structure formation // Mater. Lett. 2021. July. V. 303. P. 130585.
Panov D. et al. Effect of cold swaging on the bulk gradient structure formation and mechanical properties of a 316-type austenitic stainless steel // Materials (Basel). 2022. V. 15, No. 7. P. 2468.
Panov D. et al. Mechanisms of the reverse martensite-to-austenite transformation in a metastable austenitic stainless steel // Metals (Basel). 2021. V. 11, No. 4. P. 1 – 13.
Weidner A., Hangen U. D., Biermann H. Nanoindentation measurements on deformation-induced -martensite in a metastable austenitic high-alloy CrMnNi steel // Philos. Mag. Lett. 2014. V. 94, No. 8. P. 522 – 530.
Singh G. et al. Finite element analysis and experimental evaluation of residual stress of Zr-4 alloys processed through swaging // Metals (Basel). 2020. V. 10, No. 10. P. 1 – 15.
Wen H. et al. Strengthening mechanisms in a high-strength bulk nanostructured Cu – Zn – Al alloy processed via cryomilling and spark plasma sintering // Acta Mater. 2013. V. 61, No. 8. P. 2769 – 2782.
Panov D. O. et al. Excellent strength-toughness synergy in metastable austenitic stainless steel due to gradient structure formation // Mater. Lett. 2021. July. V. 303. P. 130585.
Aletdinov A. et al. Martensite-to-austenite reversion and recrystallization in cryogenically-rolled type 321 metastable austenitic steel // Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2019. V. 50, No. 3. P. 1346 – 1357.
Panov D. et al. Gradient microstructure and texture formation in a metastable austenitic stainless steel during cold rotary swaging // Materials (Basel). 2023. V. 16, No. 4. P. 1 – 16.
Wu X., Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties // Mater. Res. Lett. 2017. V. 5, No. 8. P. 527 – 532.
Бубнов В. А., Костенко С. Г. Механизм упрочнения аустенитных сталей при пластическом деформировании // Известия вузов. Машиностроение. 2008. V. 6. P. 63 – 70.
DOI: https://doi.org/10.30906/mitom.2023.8.58-66
© Издательский дом «Фолиум», 1998–2024