Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Влияние давления и температуры нагрева на структуру и механические свойства сваренного взрывом алюминий-ниобиевого многослойного композита

Ю. Н. Малютина, Д. В. Лазуренко, Е. А. Ложкина

Аннотация


Исследованы многослойные композиты, изготовленные cваркой взрывом и состоящие из чередующихся пластин ниобия и алюминия. Проведена термическая обработка полученных образцов — отжиг при 700, 800, 900 °C под нагрузкой и без нее. Определены структура, предел прочности при растяжении, ударная вязкость и микротвердость композитов по Виккерсу. Показано, что вблизи границ раздела, где происходило локальное расплавление и быстрое затвердевание, образовались зоны перемешивания, состоящие из неравновесных фаз, интерметаллидных частиц NbAl3 и Nb2Al, а также нерастворившихся объемов ниобия. Повышение температуры отжига от 700 до 900 °C вызвало рост интерметаллидных включений, что привело к появлению трещин в реакционном слое и значительному ухудшению механических свойств. Наибольшие значения предела прочности (700 МПа) и ударной вязкости (86 Дж/см2 ) образцов получены после отжига под давлением при 900 и 800 °C соответственно. Оптимальным режимом, благоприятно влияющим на прочностные характеристики и способствующим сохранению бездефектной структуры, является отжиг при 700 °C под давлением 30 МПа.

Ключевые слова


алюминий; ниобий; сварка взрывом; интерметаллидные композиты; отжиг; давление; микроструктура; механические свойства

Полный текст:

PDF

Литература


Dève H. E., Maloney M. J. On the toughening of intermetallics with ductile fibers: Role of interfaces // Acta Metallurgica et Materialia. 1991. V. 39. P. 2275 – 2284. DOI: 10.1016/0956-7151(91)90010-X

Liu C. T., Cahn R. W., Sauthoff G. Ordered intermetallics. Physical metallurgy and mechanical behavior. Springer, 1992. 701 p.

Westbrook J. H., Fleischer R. L. Structural applications of intermetallic compounds. Wiley, 2000. 346 p.

Sauthoff G. Intermetallics. Wiley, 2007. 165 p.

Гринберг Б. А., Счастливцев М. А. Интерметаллиды Ni3Al и TiAl: микроструктура и деформационное поведение. Екатеринбург: УрО РАН, 2002. 39 с.

Ночовная Н. А., Базылева О. А., Каблов Д. Е., Панин П. В. Интерметаллидные сплавы на основе титана и никеля. Москва: ВИАМ, 2018. 303 с.

Lazurenko D. V., Bataev I. A., Mali V. I. et al. Explosively welded multilayer Ti – Al composites: Structure and transformation during heat treatment // Materials & Design. 2016. V. 102. P. 122 – 130. DOI: 10.1016/j.matdes.2016.04.037

Ogneva T. S., Bataev I. A., Mali V. I. et al. Effect of sintering pressure and temperature on structure and properties of NiAl metal-intermetallic composites produced by SPS // Materials Characterization. 2021. V. 180. P. 111415. DOI: 10.1016/ j.matchar.2021.111415

Bataev I. A., Ogneva T. S., Bataev A. A. et al. Explosively welded multilayer Ni – Al composites // Materials & Design. 2015. V. 88. P. 1082 – 1087. DOI: 10.1016/j.matdes.2015. 09.103

Wang H., Kou R., Vecchio K. S. Design, fabrication and optimization of FeAl – FeAl2 eutectoid metallic-intermetallic laminate (MIL) composites // Materialia. 2020. V. 13. P. 100859, Sep. 2020. DOI: 10.1016/j.mtla.2020.100859

Loureiro A., Mendes R., Ribeiro J. B. et al. Effect of explosive mixture on quality of explosive welds of copper to aluminium // Materials & Design. 2016. V. 95. P. 256 – 267. DOI: 10.1016/j.matdes.2016.01.116

Dymek S., Dollar M., Leonard K. Synthesis and characterization of mechanically alloyed Nb3Al-base alloys // Materials Science and Engineering: A. 1997. V. 239 – 240. No. 1 – 2. P. 507 – 514. DOI: 10.1016/S0921-5093(97)00624-2

Gauthier V., Josse C., Larpin J. P., Vilasi M. High-temperature oxidation behavior of the intermetallic compound NbAl3: influence of two processing techniques on the oxidation mechanism // Oxidation of Metals. 2000. V. 54, No. 1. P. 27 – 45. DOI: 10.1023/A:1004694327812

Gnanamoorthy R., Hanada S. Microstructure and strength of binary and tantalum alloyed two-phase Nbss/Nb3Al base alloys // Materials Science and Engineering: A. 1996. V. 207, No. 1. P. 129 – 134. DOI: 10.1016/0921-5093(95)10036-9

Халикова Г. Р., Корзникова Г. Ф., Назаров К. С. и др. О возможности применения интенсивной пластической деформации кручением под высоким давлением для изготовления Al – Nb металломатричных композиционных материалов // Письма о материалах. 2020. Т. 10, № 4. С. 475 – 480. DOI: 10.22226/2410-3535-2020-4-475-480

Лякишев Н. П. Диаграммы состояния двойных металлических систем. Т. 2. М.: Машиностроение, 1997. 1024 с.

Коржов В. П., Карпов М. И., Прохоров Д. В. Многослойная структура и высокотемпературная прочность жаропрочных материалов на основе соединенй ниобия с алюминием и кремнием, полученных из композитов Nb – Al и Nb – Si // Физика и техника высоких давлений. 2013. Т. 23, № 1. С. 99 – 107.

Zhang N., Wang W., Cao X., Wu J. The effect of annealing on the interface microstructure and mechanical characteristics of AZ31B/AA6061 composite plates fabricated by explosive welding // Materials & Design. 2015. V. 65. P. 1100 – 1109. DOI: 10.1016/j.matdes.2014.08.025

Zhu C., Sun L., Gao W. et al. The effect of temperature on microstructure and mechanical properties of Al/Mg lap joints manufactured by magnetic pulse welding // Journal of Materials Research and Technology. 2019. V. 8, Is. 3. P. 3270 – 3280. DOI: 10.1016/j.jmrt.2019.05.017

Fronczek D. M., Chulist R., Szulc Z., Wojewoda-Budka J. Growth kinetics of TiAl3 phase in annealed Al/Ti/Al explosively welded clads // Materials Letters. 2017. V. 198. P. 160 – 163. DOI: 10.1016/j.matlet.2017.04.025

Shiran M. K. G., Khalaj G., Pouraliakbar H. M. et al. Effects of heat treatment on the intermetallic compounds and mechanical properties of the stainless steel 321-aluminum 1230 explosive-welding interface // International Journal of Minerals. Metallurgy and Materials. 2017. V. 24. P. 1267 – 1277. DOI: 10.1007/s12613-017-1519-x

Tricarico L., Spina R., Sorgente D., Brandizzi M. Effects of heat treatments on mechanical properties of Fe/Al explosion welded structural transition joints // Materials & Design. 2009. V. 30, Is. 7. P. 2693 – 2700. DOI: 10.1016/j.matdes. 2008.10.010

Shiran M. K. G., Khalaj G., Pouraliakbar H. et al. Multilayer Cu/Al/Cu explosive welded joints: characterizing heat treatment effect on the interface microstructure and mechanical properties // Journal of Manufacturing Processes. 2018. V. 35. P. 657 – 663. DOI: 10.1016/j.jmapro.2018.09.014

Abedi M., Asadi A., Sovizi S. et al. Influence of pulsed direct current on the growth rate of intermetallic phases in the Ni – Al system during reactive spark plasma sintering // Scripta Materialia. 2022. V. 216. P. 114759. DOI: 10.1016/j.scriptamat.2022.114759

Lazurenko D. V., Bataev I. A., Mali V. I. et al. Synthesis of metal-intermetallic laminate (MIL) composites with modified Al3Ti structure and in situ synchrotron x-ray diffraction analysis of sintering process // Materials & Design. 2018. V. 151. P. 8 – 16. DOI: 10.1016/j.matdes.2018.04.038

Munir Z., Tamburini U., Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method // Journal of Materials Science. 2006. V. 41, No. 3. P. 763 – 777. DOI: 10.1007/s10853-006-6555-2

Hulbert D., Jiang D., Dudina D., Mukherjee A. The synthesis and consolidation of hard materials by spark plasma sintering // International Journal of Refractory Metals and Hard Materials. 2009. V. 27, No. 2. P. 367 – 375. DOI: 10.1016/j.ijrmhm. 2008.09.011

Malyutina Yu. N., Anisimov A. G., Popelyukh A. I. et al. Microstructure and properties of multilayer niobium-aluminum composites fabricated by explosive welding // Metals. 2022. V. 12(11), Is. 1950. P. 1 – 14. DOI: 10.3390/met12111950

Xu J. F., Ma H. H., Shen Z. W., Li Y. H. Effects of interlayer on the interfacial microstructures and thermomechanical kinetics of explosive welded 2A14 aluminum alloy-niobium composite // Materials Today Communications. 2022. V. 33. P. 104792. DOI: 10.1016/j.mtcomm.2022.104792

Carvalho G. H. S. F. L., Galvão I., Mendes R. et al. Explosive welding of aluminium to stainless steel using carbon steel and niobium interlayers // Journal of Materials Processing Technology. 2020. V. 283. P. 116707. DOI: 10.1016/j.jmatprotec. 2020.116707

Ogurtani T. Ö. Kinetics of diffusion in the Nb – Al system // Metallurgical Transactions. 1972. V. 3. P. 421 – 425.

Bataev I. A., Lazurenko D. V., Tanaka S. et al. High cooling rates and metastable phases at the interfaces of explosively welded materials // Acta Materialia. 2017. V. 135. P. 277 – 289. DOI: 10.1016/j.actamat.2017.06.038

Paul H., Petrzak P., Chulist R. et al. Effect of impact loading and heat treatment on microstructure and properties of multi-layered AZ31/AA1050 plates fabricated by single-shot explosive welding // Materials & Design. 2022. V. 214. P. 110411. DOI: 10.1016/j.matdes.2022.110411

Chu Q., Zhang M., Li J., Yan C. Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding // Materials Science and Engineering A. 2017. V. 689. P. 323 – 331. DOI: 10.1016/j.msea.2017.02.075

Chung D.-S., Enoki M., Kishi T. Microstructural analysis and mechanical properties of in situ Nb/Nb-aluminide layered materials // Science and Technology of Advanced Materials. 2002. V. 3, No. 2. P. 129 – 135. DOI: 10.1016/ S1468-6996(02)00007-4

Murakami T., Kitahara A., Koga Y. et al. Microstructure of Nb – Al powders consolidated by spark plasma sintering process // Materials Science and Engineering A. 1997. V. 239 – 240, No. 1 – 2. P. 672 – 679. DOI: 10.1016/ S0921-5093(97)00651-5




DOI: https://doi.org/10.30906/mitom.2023.9.45-53


© Издательский дом «Фолиум», 1998–2024