Влияние температуры отпуска на механические и коррозионные свойства модифицированной мартенситной нержавеющей стали CA6NM (08Х12Н4ГСМЛ)
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Soewono S., Pantouw J., Azzahra S. Forecast of electric energy demand for the Java-Bali Region in 2017 – 2036 with a combination of analytical, econometric and trending methods // Energy. 2018. V. 9, Is. 2. P. 101 – 110.
Xu Y., Liu M. Corrosion behavior of polysiloxane-ferroferric oxide coating coated on carbon steel in NaCl Solution and geothermal water // Geothermics. 2017. V. 70. P. 339 – 350.
Gunawan J. Windarta, Harmoko U. Overview potensi panas bumi di Provinsi Jawa Barat // Jurnal Energi Baru dan Terbarukan. 2021. V. 2, Is. 2. P. 60 – 73.
Karlsdottir S. N., Ragnarsdottir K. R., Thorbjornsson I. O., Einarrson A. Corrosion testing in superheated geothermal steam in Iceland // Geothermics. 2015. V. 53. P. 281 – 290.
Rowbotham S., Chung O., Ko M., Wong J. C. Failure mechanisms encountered in geothermal steam service // Proceedings World Geothermal Congress. Melbourne, Australia, 2015. Wong Quest Integrity NZL Ltd. PO Box 38096.
Tomarov G. V., Borzenko V. I., Shipkov A., Sorokina E. V. Achieving more efficient and reliable operation of geothermal turbines by using a secondary flash steam superheating system // Thermal Engineering. 2018. V. 65, Is. 10. P. 734 – 740.
Dwisaputro R., Anwar M. S., Rusnaldy, Mabruri E. Effect of heat treatment of AISI 410 martensitic stainless steel on microstructure and corrosion resistance // Maj. Metal. 2018. V. 33, Is. 1. P. 19 – 26.
Harison M. C. A., Swamy M., Pavan A. H. V., Jayaraman G. Root cause analysis of steam turbine blade failure // Trans. India Inst. Met. 2016. V. 69, Is. 2. P. 659 – 663.
Trudel A., Lévesque M., Brochu M. Microstructural effects on the fatigue crack growth resistance of a stainless steel CA6NM weld // Eng. Frac. Mechanics. 2014. V. 115. P. 60 – 72.
Nikitasari A., Prasetyo M. A., Riastuti R., Mabruri E. Pitting corrosion resistance of CA6NM as geothermal turbine blade material in simulated artificial geothermal brine // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 541, Is. 1. 012016.
Prasetyo M. A., Puspasari V., Anwa M. S. et al. Mechanical properties of modified cast martensitic stainless steel CA6NM with addition of molybdenum and nitrogen // AIP Conf. Proc. 2020. V. 2232, Is. 1. P. 060001.
Puspasari V., Prasetyo M. A., Nikitasari A. et al. Effect of tempering treatment on pitting corrosion resistance of modified cast CA6NM stainless steel in 3.5 % NaCl solution // AIP Conf. Proc. 2021. V. 2382, Is. 1. P.060002.
Mabruri E., Pasaribu R. R., Sugandi M. T., Sunardi. Effect of high temperature tempering on the mechanical properties and microstructure of the modified 410 martensitic stainless steel // AIP Conf. Proc. 2018. V. 1964, Is. 1. 020032.
Khazaei A., Mollaahmadi A. Rapid tempering of martensitic stainless steel AISI 420: microstructure, mechanical and corrosion properties // J. of Mater. Eng. Perform. 2017. V. 26. P. 1626 – 1633.
Isfahany A. N., Saghafian H., Borhani G. The effect of heat treatment on mechanical properties and corrosion behavior of AISI 420 martensitic stainless steel // J. Alloys Compd. 2011. V. 509, Is. 9. P. 3931 – 3936.
Calliari, Zanesco M., Dabala M. et al. Investigation of microstructure and properties of a Ni – Mo martensitic stainless steel // Mater. Des. 2008. V. 29, Is. 1. P. 246 – 250.
Кондратьев С. Ю., Пташник А. В., Анастасиади Г. П., Петров С. Н. Анализ превращений карбидных фаз в сплаве 25Cr35Ni методом количественной электронной микроскопии // МиТОМ. 2015. № 7(721). С. 36 – 43. (Kondrat’ev S. Yu., Ptashnik A. V., Anastasiadi G. P., Petrov S. N. Analysis of transformations of carbide phases in alloy 25Cr35Ni by the method of quantitative electron microscopy // Met. Sci. Heat Treat. 2015. V. 57, No. 7 – 8. P. 402 – 409.)
Talis A. L., Kraposhin V. S., Kondrat’ev S. Y. et al. Non-crystallographic symmetry of liquid metal, flat crystallographic faults and polymorph transformation of the M7C3 carbide // Acta Crystallogr. A. 2017. V. A73, Part 3. P. 209 – 217.
Горынин В. И., Кондратьев С. Ю., Оленин М. И., Рогожкин В. В. Концепция карбидного конструирования сталей повышенной хладостойкости // МиТОМ. 2014. № 10(712). С. 32 – 38. (Gorynin V. I., Kondrat’ev S. Yu., Olenin M. I., Rogozhkin V. V. A concept of carbide design of steels with improved cold resistance // Met. Sci. Heat Treat. 2015. V. 56, Is. 9 – 10. P. 548 – 554.)
Berns H., Gavriljuk V. Tempering of martensitic stainless steel with 0.6 w/o Nitrogen and/or Carbon // J. Phys. IV Fr. 1997. V. 7, Is. 5. P. C5-263 – C5-268.
Salih A. A., Omar M. Z., Junaidi S., Sajuri Z. Effect of different heat treatment on the SS440C martensitic stainless steel // AJBAS J. 2011. V. 5, Is. 12. P. 867 – 871.
Hu F., Wu K., Hou T., Shirzadi A. Tempering stability of retained austenite in nano structured dual phase steels // Mater. Sci. Technol. 2013. V. 29, Is. 8. P. 947 – 953.
Perdana H., Anwar M. S., Juniarsih A., Mabruri E. Effect of temperature and tempering time on hardness, microstructure and corrosion rate of 13Cr3Mo3Ni martensitic stainless steel // Maj. Metal. 2017. V. 32, Is. 1. P. 37 – 44.
Prifiharni S., Anwar M. A., Mabruri E. The influence of heat treatment on microstructure and corrosion resistance of 13Cr – 1Mo martensitic stainless steel // Widyariset. 2016. V. 2, Is. 1. P. 9 – 16.
DOI: https://doi.org/10.30906/mitom.2023.10.59-64
© Издательский дом «Фолиум», 1998–2024