

Методика прогнозирования микроструктуры сталей после изотермической закалки при температуре ниже Мн
Аннотация
Предложена усовершенствованная методика прогнозирования количества структурных составляющих, формирующихся в легированных сталях при изотермической и ступенчатой закалке в температурной области мартенситного превращения. Проведены дилатометрические исследования ряда машиностроительных сталей. Установлена температурная зависимость коэффициента n уравнения Остина-Риккета, описывающего кинетику изотермического бейнитного превращения при температуре ниже Мн . Разработана методика, учитывающая условие равновесия α- и γ-фаз. На примере стали 20Х2Г2СНМА показано, что предложенная методика позволяет в несколько раз повысить адекватность прогнозирования по сравнению с методикой, широко используемой в настоящее время.
Ключевые слова
Литература
Mishra S., Dalai R. Effect of quenching and partitioning treatment on low carbon medium manganese alloyed steels — A short review // Materials Today: Proceedings. 2021. V. 43, Is. 1. P. 593 – 596. DOI: 10.1016/j.matpr.2020.12.107
Liu X., Han Y., Wei J. Effect of tempering temperature on microstructure and mechanical properties of a low carbon bainitic steel treated by quenching-partitioning-tempering (QPT) process // J. Mater. Res. Technol. 2023. V. 23. P. 911 – 918. DOI: 10.1016/j.jmrt.2023.01.061
Maisuradze M. V., Ryzhkov M. A. Thermal stabilization of austenite during quenching and partitioning of austenite for automotive steels // Metallurgist. 2018. V. 62, Is. 3 – 4. P. 337 – 347. DOI: 10.1007/s11015-018-0666-2
Ståhlkrantz A., Hedström P., Sarius N. Influence of austempering conditions on hardness and microstructure of bainite in low-alloyed steel // Metall. Mater. Trans. A. 2024. V. 55. P. 209 – 217. DOI: 10.1007/s11661-023-07243-1
Su Y., Yang S., Yu X. F. Effect of austempering temperature on microstructure and mechanical properties of M50 bearing steel // J. Mater. Res. Technol. 2022. V. 20. P. 4576 – 4584. DOI: 10.1016/j.jmrt.2022.09.002
Baradari S., Boutorabi S. M. Effects of isothermal transformation conditions on the microstructure and hardness values of a high-carbon Al – Si alloyed steel // Mater. Des. 2015. V. 86. P. 603 – 609. DOI: 10.1016/j.matdes.2015.07.151
Zhu J. G., Sun X., Barber G. C. Bainite transformation-kinetics-microstructure characterization of austempered 4140 steel // Metals. 2020. V. 10, Is. 2. Art. 236. DOI: 10.3390/met10020236
Maisuradze M. V., Yudin Yu. V., Kuklina A. A. Increase in impact strength during bainite structure formation in HY-TUF high-strength steel // Metallurgist. 2019. V. 63, Is. 7 – 8. P. 849 – 858. DOI: 10.1007/s11015-019-00899-4
Li W., Gao H., Li Z. Effect of lower bainite/martensite/retained austenite triplex microstructure on the mechanical properties of a low-carbon steel with quenching and partitioning process // Int. J. Miner. Metall. Mater. 2016. V. 23. P. 303 – 313. DOI: 10.1007/s12613-016-1239-7
Edmonds D. V., He K., Rizzo F. C. Quenching and partitioning martensite — A novel steel heat treatment // Mater. Sci. Eng. A. 2006. V. 438 – 440. P. 25 – 34. DOI: 10.1016/ j.msea.2006.02.133
Speer J. G., Edmonds D. V., Rizzo F. C. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation // Curr. Opin. Solid State Mater. Sci. 2004. V. 8, Is. 3 – 4. P. 219 – 237. DOI: 10.1016/j.cossms.2004.09.003
Kang S., Kim K., Son Y. Application of the quenching and partitioning (Q&P) process to D6AC steel // ISIJ Int. 2016. V. 56, Is. 11. P. 2057 – 2061. DOI: 10.2355/isijinternational. ISIJINT-2016-257
Kaar S., Schneider R., Krizan D. Influence of the quenching and partitioning process on the transformation kinetics and hardness in a lean medium manganese TRIP steel // Metals. 2019. V. 9, Is. 3. Art. 353. DOI: 10.3390/met9030353
Maisuradze M. V., Yudin Yu. V., Kuklina A. A. Formation of microstructure and properties during isothermal treatment of aircraft building steel // Metallurgist. 2022. V. 65, Is. 9 – 10. P. 1008 – 1019. DOI: 10.1007/s11015-022-01241-1
Chen B., Liang J., Kang T. A study of the optimum quenching temperature of steels with various hot rolling microstructures after cold rolling, quenching and partitioning treatment // Metals. 2018. V. 8, Is. 8. Art. 579. DOI: 10.3390/met8080579
Kaar S. et al. On competing reactions and austenite stabilization: Advanced model for exact microstructural prediction in Q&P steels with elevated Mn-content // Materialia. 2022. V. 26. Art. 101584. DOI: 10.1016/j.mtla.2022.101584
Li L. et al. Modified quenching temperature selection method for partial austenitization quenching and partitioning steel // Mater. Res. Express. 2018. V. 5, Is. 6. Art. 066553. DOI: 10.1088/2053-1591/aacd1a
Li Y., Chen S., Wang C. Modeling retained austenite in Q&P steels accounting for the bainitic transformation and correction of its mismatch on optimal conditions // Acta Mater. 2020. V. 188. P. 528 – 538. DOI: 10.1016/j.actamat.2020.02.033
Zhang J., Dai Z., Zeng L. Revealing carbide precipitation effects and their mechanisms during quenching-partitioning-tempering of a high carbon steel: Experiments and Modeling // Acta Mater. 2021. V. 217. Art. 117176. DOI: 10.1016/j.actamat.2021.117176
Kop T. A., Sietsma J., Van Der Zwaag S. Dilatometric analysis of phase transformations in hypo-eutectoid steels // J. Mater. Sci. 2001. V. 36. P. 519 – 526. DOI: 10.1023/A:1004805402404
Bhadeshia H. K. D. H., Honeycombe R. Steels: Microstructure and Properties. Oxford: Elsevier Ltd., 2017. 488 p.
Tanaka S., Shirahata H., Shigesato G. Carbon enrichment of austenite during ferrite – bainite transformation in low-alloy-steel // ISIJ Int. 2023. V. 63, Is. 3. P. 543 – 552. DOI: 10.2355/isijinternational.ISIJINT-2022 – 392
Maisuradze M. V., Kuklina A. A., Lebedev D. I. Thermokinetic diagrams of transformations in supercooled austenite in alloyed steels // Steel in Translation. 2023. V. 53, Is. 6. P. 562 – 570. DOI: 10.3103/S0967091223060098
Koistinen D. P., Marburger R. E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels // Acta Metallurgica. 1959. V. 7. P. 59 – 60. DOI: 10.1016/ 0001-6160(59)90170-1
Maisuradze M. V., Yudin Yu. V., Kuklina A. A. Computer simulation and experimental study of isothermal bainitic transformation in alloy steels // Met. Sci. Heat Treat. 2020. V. 62, Is. 7 – 8. P. 479 – 486. DOI: 10.1007/s11041-020-00588-z
Maisuradze M. V., Yudin Yu. V., Kuklina A. A. A novel approach for analytical description of the isothermal bainite transformation in alloyed steels // Mater. Perform. Charact. 2019. V. 8, Is. 2. P. 80 – 95. DOI: 10.1520/MPC20170168
Starink M. J. Kinetic equations for diffusion-controlled precipitation reactions // J. Mater. Sci. 1997. V. 32. P. 4061 – 4070. DOI: 10.1023/A:1018649823542
Куркин А. С. Исследование кинетики фазовых превращений легированной стали методами математического моделирования // Заводская лаборатория. Диагностика материалов. 2019. Т. 85, № 12. С. 25 – 32. DOI: 10.26896/ 1028-6861-2019-85-12-25-32
Maisuradze M. V., Kuklina A. A., Lebedev D. I. Analysis of the kinetics of isothermal bainitic transformation in alloy steels // Met. Sci. Heat Treat. 2023. V. 65. Is. 7 – 8. P. 474 – 484. DOI: 10.1007/s11041-023-00958-3
Lin S., Borgenstam A., Stark A. Effect of Si on bainitic transformation kinetics in steels explained by carbon partitioning, carbide formation, dislocation densities, and thermodynamic conditions // Mater. Charact. 2022. V. 185. Art. 111774. DOI: 10.1016/j.matchar.2022.111774
Foster D., Paladugu M., Hughes J. Formation of lower bainite in a high carbon steel — an in-situ synchrotron XRD study // J. Mater. Res. Technol. 2022. V. 18. P. 5380 – 5393. DOI: 10.1016/j.jmrt.2022.05.025
Jacob A., Schuscha B., Retzl P. Thermodynamic prediction of the impact of carbon on bainite formation, including the BCT transformation // J. Phase Equilibria Diffus. 2023. V. 44. P. 729 – 737. DOI: 10.1007/s11669-023-01067-7
Юрьев С. Ф. О роли термического расширения фаз при мартенситном превращении стали // ЖТФ. 1950. Т. 20, № 5. С. 546 – 570.
DOI: https://doi.org/10.30906/mitom.2024.7.3-12
© Издательский дом «Фолиум», 1998–2025