Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Влияние добавок Cr3C2 на структуру и свойства покрытий из сплава Кантора

Александр Борисович Юргин, Алексей Александрович Руктуев, Дарья Викторовна Лазуренко, Владислав Сергеевич Шикалов, Иван Константинович Чакин

Аннотация


Получены покрытия на основе высокоэнтропийного сплава Кантора, упрочненного частицами Cr3C2, методом вневакуумной электронно-лучевой наплавки. Изучена микроструктура покрытий, определен химический и фазовый составы, проведены дюрометрические измерения, испытания на износостойкость и жаростойкость. Установлено, что структура покрытий состоит из матричной ГЦК-фазы и карбидов типа Ме7C3. Увеличение доли частиц Cr3C2, вводимых в исходную смесь порошков, от 5 до 50 % (масс.) вызывает увеличение количества карбидной фазы в наплавленном слое от 10 до 60 % соответственно, что способствует повышению микротвердости, износостойкости и стойкости к окислению покрытий. Максимальные характеристики имеет покрытие, полученное при добавке 50 % Cr3C2 в смесь порошков.


Ключевые слова


высокоэнтропийный сплав; вневакуумная электронно-лучевая наплавка; микроструктура; жаростойкость; износостойкость

Полный текст:

PDF

Литература


Yeh J.-W., Chen S.-K., Lin S.-J. et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes // Advanced Engineering Materials. 2004. V. 6, No. 5. P. 299 – 303. DOI: 10.1002/ adem.200300567

Cantor B., Chang I. T. H., Knight P., Vincent A. J. B. Microstructural development in equiatomic multicomponent alloys // Materials Science and Engineering. A. 2004. V. 375 – 377. P. 213 – 218. DOI: 10.1016/j.msea.2003.10.257

Chen J., Zhou X., Wang W. et al. A review on fundamental of high entropy alloys with promising high-temperature properties // Journal of Alloys and Compounds. 2018. V. 760. P. 15 – 30. DOI: 10.1016/j.jallcom.2018.05.067

Alshataif Y. A., Sivasankaran S., Al-Mufadi F. A. et al. Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: A review // Metals and Materials International. 2020. V. 26, No. 8. P. 1099 – 1133. DOI: 10.1007/s12540-019-00565-z

Biswas K., Gurao N. P., Maiti T., Mishra R. S. High Entropy Materials: Processing, Properties, and Applications. Singapore: Springer Singapore, 2022. 464 p. DOI: 10.1007/ 978-981-19-3919-8

Ye Y. F., Wang Q., Lu J. et al. High-entropy alloy: challenges and prospects // Materials Today. 2016. V. 19, No. 6. P. 349 – 362. DOI: 10.1016/j.mattod.2015.11.026

Yu P. F., Zhang L. J., Cheng H. et al. The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering // Intermetallics. 2016. V. 70. P. 82 – 87. DOI: 10.1016/j.intermet. 2015.11.005

Liao L., Gao R., Yang Z. H. et al. A study on the wear and corrosion resistance of high-entropy alloy treated with laser shock peening and PVD coating // Surface and Coatings Technology. 2022. V. 437. P. 128281. DOI: 10.1016/j.surfcoat. 2022.128281

Fan N., Rafferty A., Lupoi R. et al. Microstructure evolution and mechanical behavior of additively manufactured CoCrFeNi high-entropy alloy fabricated via cold spraying and post-annealing // Materials Science and Engineering. A. 2023. V. 873. P. 144748. DOI: 10.1016/j.msea.2023.144748

Santana D. A., Koga G. Y., Wolf W. et al. Wear-resistant boride reinforced steel coatings produced by non-vacuum electron beam cladding // Surface and Coatings Technology. 2020. V. 386. P. 125466. DOI: 10.1016/j.surfcoat.2020.125466

Ruktuev A., Yurgin A., Shikalov V. et al. Structure and properties of HEA-based coating reinforced with CrB particles // Metal Working and Material Science. 2023. V. 25, No. 3. P. 87 – 103. DOI: 10.17212/1994-6309-2023-25.3-87-103

Bataev V. A., Golkovski M. G., Samoylenko V. V. et al. Structure and mechanical properties of a two-layered material produced by the E-beam surfacing of Ta and Nb on the titanium base after multiple rolling // Applied Surface Science. 2018. V. 437. P. 181 – 189. DOI: 10.1016/j.apsusc.2017.12.114

Gludovatz B., Hohenwarter A., Catoor D. et al. A fracture-resistant high-entropy alloy for cryogenic applications // Science. 2014. V. 345, No. 6201. P. 1153 – 1158. DOI: 10.1126/science.1254581

Otto F., Dlouhý A., Somsen Ch. et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy // Acta Materialia. 2013. V. 61, No. 15. P. 5743 – 5755. DOI: 10.1016/j.actamat. 2013.06.018

Chen M., Shi X. H., Yang H. et al. Wear behavior of Al0.6CoCrFeNi high-entropy alloys: Effect of environments // Journal of Materials Research. 2018. V. 33, No. 19. P. 3310 – 3320. DOI: 10.1557/jmr.2018.279

Xu X. D., Liu P., Hirata A. et al. Microstructural origins for a strong and ductile Al0.1CoCrFeNi high-entropy alloy with ultrafine grains // Materialia. 2018. V. 4. P. 395 – 405. DOI: 10.1016/j.mtla.2018.10.015

Gromov V. E., Rubannikova Yu. A., Konovalov S. V. et al. Generation of increased mechanical properties of Cantor high­entropy alloy // Izvestiya. Ferrous Metallurgy. 2021. V. 64, No. 8. P. 599 – 605. DOI: 10.17073/ 0368-0797-2021-8-599-605

Seol J. B., Bae J. W., Kim J. G. et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications // Acta Materialia. 2020. V. 194. P. 366 – 377. DOI: 10.1016/j.actamat.2020.04.052

Stepanov N. D., Yurchenko N. Yu., Tikhonovsky M. A., Salishchev G. A. Effect of carbon content and annealing on structure and hardness of the CoCrFeNiMn-based high entropy alloys // Journal of Alloys and Compounds. 2016. V. 687. P. 59 – 71. DOI: 10.1016/j.jallcom.2016.06.103

Toda-Caraballo I. A general formulation for solid solution hardening effect in multicomponent alloys // Scripta Materialia. 2017. V. 127. P. 113 – 117. DOI: 10.1016/j.scriptamat. 2016.09.009

Шайсултанов Д. Г. Структура и механические свойства высокоэнтропийных сплавов системы CoCrFeNiX (X = Mn, V, Mn и V, Al и Cu): дисс. ... канд. техн. наук. г. Белгород, 2015. 142 с.

Салищев Г. А. Получение, структура и свойства высокоэнтропийных материалов: Тезисы международной конференции и школы молодых ученых (г. Белгород, 14 – 16 октября 2020 г.) / Под ред. Г. А. Салищева, М. С. Тихоновой, Е. А. Поволяевой. Белгород: ООО “Эпицентр”, 2020. 108 с.

Yim D., Sathiyamoorthi P., Hong S.-J., Kim H. S. Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering // Journal of Alloys and Compounds. 2019. V. 781. P. 389 – 396. DOI: 10.1016/j.jallcom.2018.12.119

Cheng J., Liu D., Liang X., Chen Y. Evolution of microstructure and mechanical properties of in situ synthesized TiC – TiB2 / CoCrCuFeNi high entropy alloy coatings // Surface and Coatings Technology. 2015. V. 281. P. 109 – 116. DOI: 10.1016/j.surfcoat.2015.09.049

Li X., Feng Y., Liu B. et al. Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding // Journal of Alloys and Compounds. 2019. V. 788. P. 485 – 494. DOI: 10.1016/j.jallcom.2019.02.223

Astafurova E., Melnikov E., Astafurov S. et al. A comparative study of a solid solution hardening in carbon-alloyed FeMnCrNiCo0.95C0.05 high-entropy alloy subjected to different thermal–mechanical treatments // Materials Letters. 2021. V. 285. P. 129073. DOI: 10.1016/j.matlet.2020.129073

Li K., Liang J., Zhou J. Effects of WS2 and Cr3C2 addition on microstructural evolution and tribological properties of the self-lubricating wear-resistant CoCrFeNiMo composite coatings prepared by laser cladding // Optics & Laser Technology. 2023. V. 163. P. 109442. DOI: 10.1016/j.optlastec. 2023.109442

Domarov E., Chakin I., Cherepkov V. et al. Upgrated the extraction device of focused electron beam into the atmosphere // Proceedings of the 27th Russian Particle Accelerator Conference. 2021. P. 114 – 116. DOI: 10.18429/ jacow-rupac2021-frb03

Vorobev D., Domarov E., Fadeev S. et al. Accelerators of ELV series: Current status and further development // Proceedings of the 27th Russian Particle Accelerator Conference. 2021. P. 111 – 113. DOI: 10.18429/jacow-rupac2021-frb02

Bryazgin A. A., Kuksanov N. K., Salimov R. A. Industrial electron accelerators developed at the Budker Institute of Nuclear Physics, SB RAS (BINP) // Uspekhi Fizicheskih Nauk. 2018. V. 188, No. 06, P. 672 – 685. DOI: 10.3367/UFNr. 2018.03.038344

Ruktuev A. A., Lazurenko D. V., Ogneva T. S. et al. Structure and oxidation behavior of CoCrFeNiX (where X is Al, Cu, or Mn) coatings obtained by electron beam cladding in air atmosphere // Surface and Coatings Technology. 2022. V. 448. P. 128921. DOI: 10.1016/j.surfcoat.2022.12892

Okamoto H., Schlesinger M. E., Mueller E. M., Schlesinger M. E. ASM Handbook, V. 3. Alloy phase diagrams. Materials Park, Ohio: ASM International, 2016. 778 p.

Ko J. Y., Hong S. I. Microstructural evolution and mechanical performance of carbon-containing CoCrFeMnNi-C high entropy alloys // Journal of Alloys and Compounds. 2018. V. 743. P. 115 – 125. DOI: 10.1016/j.jallcom.2018.01.348

Stepanov N. D., Yurchenko N. Yu., Tikhonovsky M. A., Salishchev G. A. Effect of carbon content and annealing on structure and hardness of the CoCrFeNiMn-based high entropy alloys // Journal of Alloys and Compounds. 2016. V. 687. P. 59 – 71. DOI 10.1016/j.jallcom.2016.06.103

Chen P., Wu W., Liu H. et al. Metastable FeCrMnCo HEAs with the reinforcement of tungsten carbide fabricated by laser melting: Microstructure, mechanical properties and tribological behaviors // Materials Characterization. 2023. V. 206. P. 113397. DOI 10.1016/j.matchar.2023.113397

Liu L., Han T., Cao S. C. et al. Enhanced wearing resistance of carbide reinforced FeCoNiCrMn high entropy alloy prepared by mechanical alloying and spark plasma sintering // Materials Today Communications. 2022. V. 30. P. 103127. DOI 10.1016/j.mtcomm.2022.103127

Ye W., Xie M., Huang Z. et al. Microstructure and tribological properties of in-situ carbide/CoCrFeNiMn high entropy alloy composites synthesized by flake powder metallurgy // Tribology International. 2023. V. 181. P. 108295. DOI: 10.1016/j.triboint.2023.108295

Liu L., Han T., Cao S. C. et al. Enhanced wearing resistance of carbide reinforced FeCoNiCrMn high entropy alloy prepared by mechanical alloying and spark plasma sintering // Materials Today Communications. 2022. V. 30. P. 103127. DOI: 10.1016/j.mtcomm.2022.103127

Tong Z., Liu H., Jiao J. et al. Laser additive manufacturing of CrMnFeCoNi high entropy alloy: Microstructural evolution, high-temperature oxidation behavior and mechanism // Optics & Laser Technology. 2020. V. 130. P. 106326. DOI: 10.1016/j.optlastec.2020.106326

Kim Y.-K., Joo Y.-A., Kim H. S., Lee K.-A. High temperature oxidation behavior of Cr – Mn – Fe – Co – Ni high entropy alloy // Intermetallics. 2018. V. 98. P. 45 – 53. DOI: 10.1016/ j.intermet.2018.04.006

Wei Y., Fu Y., Pan Z. et al. Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review // International Journal of Minerals, Metallurgy and Materials. 2021. V. 28, No. 6. P. 915 – 930. DOI: 10.1007/ s12613-021-2257-7

Chang F., Cai B., Zhang C. et al. Thermal stability and oxidation resistance of FeCrxCoNiB high-entropy alloys coatings by laser cladding // Surface and Coatings Technology. 2019. V. 359. P. 132 – 140. DOI: 10.1016/j.surfcoat.2018.12.072

Zhang L., Huang Z., Chang L., Zheng Q. Comparison of oxidation behaviors of Cr7C3 at 1173 K and 1273 K // Materials Research Express. 2017. V. 4, No. 10. P. 106508. DOI: 10.1088/2053-1591/aa8d36




DOI: https://doi.org/10.30906/mitom.2024.7.13-21


© Издательский дом «Фолиум», 1998–2025