

Влияние добавок Cr3C2 на структуру и свойства покрытий из сплава Кантора
Аннотация
Получены покрытия на основе высокоэнтропийного сплава Кантора, упрочненного частицами Cr3C2, методом вневакуумной электронно-лучевой наплавки. Изучена микроструктура покрытий, определен химический и фазовый составы, проведены дюрометрические измерения, испытания на износостойкость и жаростойкость. Установлено, что структура покрытий состоит из матричной ГЦК-фазы и карбидов типа Ме7C3. Увеличение доли частиц Cr3C2, вводимых в исходную смесь порошков, от 5 до 50 % (масс.) вызывает увеличение количества карбидной фазы в наплавленном слое от 10 до 60 % соответственно, что способствует повышению микротвердости, износостойкости и стойкости к окислению покрытий. Максимальные характеристики имеет покрытие, полученное при добавке 50 % Cr3C2 в смесь порошков.
Ключевые слова
Литература
Yeh J.-W., Chen S.-K., Lin S.-J. et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes // Advanced Engineering Materials. 2004. V. 6, No. 5. P. 299 – 303. DOI: 10.1002/ adem.200300567
Cantor B., Chang I. T. H., Knight P., Vincent A. J. B. Microstructural development in equiatomic multicomponent alloys // Materials Science and Engineering. A. 2004. V. 375 – 377. P. 213 – 218. DOI: 10.1016/j.msea.2003.10.257
Chen J., Zhou X., Wang W. et al. A review on fundamental of high entropy alloys with promising high-temperature properties // Journal of Alloys and Compounds. 2018. V. 760. P. 15 – 30. DOI: 10.1016/j.jallcom.2018.05.067
Alshataif Y. A., Sivasankaran S., Al-Mufadi F. A. et al. Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: A review // Metals and Materials International. 2020. V. 26, No. 8. P. 1099 – 1133. DOI: 10.1007/s12540-019-00565-z
Biswas K., Gurao N. P., Maiti T., Mishra R. S. High Entropy Materials: Processing, Properties, and Applications. Singapore: Springer Singapore, 2022. 464 p. DOI: 10.1007/ 978-981-19-3919-8
Ye Y. F., Wang Q., Lu J. et al. High-entropy alloy: challenges and prospects // Materials Today. 2016. V. 19, No. 6. P. 349 – 362. DOI: 10.1016/j.mattod.2015.11.026
Yu P. F., Zhang L. J., Cheng H. et al. The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering // Intermetallics. 2016. V. 70. P. 82 – 87. DOI: 10.1016/j.intermet. 2015.11.005
Liao L., Gao R., Yang Z. H. et al. A study on the wear and corrosion resistance of high-entropy alloy treated with laser shock peening and PVD coating // Surface and Coatings Technology. 2022. V. 437. P. 128281. DOI: 10.1016/j.surfcoat. 2022.128281
Fan N., Rafferty A., Lupoi R. et al. Microstructure evolution and mechanical behavior of additively manufactured CoCrFeNi high-entropy alloy fabricated via cold spraying and post-annealing // Materials Science and Engineering. A. 2023. V. 873. P. 144748. DOI: 10.1016/j.msea.2023.144748
Santana D. A., Koga G. Y., Wolf W. et al. Wear-resistant boride reinforced steel coatings produced by non-vacuum electron beam cladding // Surface and Coatings Technology. 2020. V. 386. P. 125466. DOI: 10.1016/j.surfcoat.2020.125466
Ruktuev A., Yurgin A., Shikalov V. et al. Structure and properties of HEA-based coating reinforced with CrB particles // Metal Working and Material Science. 2023. V. 25, No. 3. P. 87 – 103. DOI: 10.17212/1994-6309-2023-25.3-87-103
Bataev V. A., Golkovski M. G., Samoylenko V. V. et al. Structure and mechanical properties of a two-layered material produced by the E-beam surfacing of Ta and Nb on the titanium base after multiple rolling // Applied Surface Science. 2018. V. 437. P. 181 – 189. DOI: 10.1016/j.apsusc.2017.12.114
Gludovatz B., Hohenwarter A., Catoor D. et al. A fracture-resistant high-entropy alloy for cryogenic applications // Science. 2014. V. 345, No. 6201. P. 1153 – 1158. DOI: 10.1126/science.1254581
Otto F., Dlouhý A., Somsen Ch. et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy // Acta Materialia. 2013. V. 61, No. 15. P. 5743 – 5755. DOI: 10.1016/j.actamat. 2013.06.018
Chen M., Shi X. H., Yang H. et al. Wear behavior of Al0.6CoCrFeNi high-entropy alloys: Effect of environments // Journal of Materials Research. 2018. V. 33, No. 19. P. 3310 – 3320. DOI: 10.1557/jmr.2018.279
Xu X. D., Liu P., Hirata A. et al. Microstructural origins for a strong and ductile Al0.1CoCrFeNi high-entropy alloy with ultrafine grains // Materialia. 2018. V. 4. P. 395 – 405. DOI: 10.1016/j.mtla.2018.10.015
Gromov V. E., Rubannikova Yu. A., Konovalov S. V. et al. Generation of increased mechanical properties of Cantor highentropy alloy // Izvestiya. Ferrous Metallurgy. 2021. V. 64, No. 8. P. 599 – 605. DOI: 10.17073/ 0368-0797-2021-8-599-605
Seol J. B., Bae J. W., Kim J. G. et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications // Acta Materialia. 2020. V. 194. P. 366 – 377. DOI: 10.1016/j.actamat.2020.04.052
Stepanov N. D., Yurchenko N. Yu., Tikhonovsky M. A., Salishchev G. A. Effect of carbon content and annealing on structure and hardness of the CoCrFeNiMn-based high entropy alloys // Journal of Alloys and Compounds. 2016. V. 687. P. 59 – 71. DOI: 10.1016/j.jallcom.2016.06.103
Toda-Caraballo I. A general formulation for solid solution hardening effect in multicomponent alloys // Scripta Materialia. 2017. V. 127. P. 113 – 117. DOI: 10.1016/j.scriptamat. 2016.09.009
Шайсултанов Д. Г. Структура и механические свойства высокоэнтропийных сплавов системы CoCrFeNiX (X = Mn, V, Mn и V, Al и Cu): дисс. ... канд. техн. наук. г. Белгород, 2015. 142 с.
Салищев Г. А. Получение, структура и свойства высокоэнтропийных материалов: Тезисы международной конференции и школы молодых ученых (г. Белгород, 14 – 16 октября 2020 г.) / Под ред. Г. А. Салищева, М. С. Тихоновой, Е. А. Поволяевой. Белгород: ООО “Эпицентр”, 2020. 108 с.
Yim D., Sathiyamoorthi P., Hong S.-J., Kim H. S. Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering // Journal of Alloys and Compounds. 2019. V. 781. P. 389 – 396. DOI: 10.1016/j.jallcom.2018.12.119
Cheng J., Liu D., Liang X., Chen Y. Evolution of microstructure and mechanical properties of in situ synthesized TiC – TiB2 / CoCrCuFeNi high entropy alloy coatings // Surface and Coatings Technology. 2015. V. 281. P. 109 – 116. DOI: 10.1016/j.surfcoat.2015.09.049
Li X., Feng Y., Liu B. et al. Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding // Journal of Alloys and Compounds. 2019. V. 788. P. 485 – 494. DOI: 10.1016/j.jallcom.2019.02.223
Astafurova E., Melnikov E., Astafurov S. et al. A comparative study of a solid solution hardening in carbon-alloyed FeMnCrNiCo0.95C0.05 high-entropy alloy subjected to different thermal–mechanical treatments // Materials Letters. 2021. V. 285. P. 129073. DOI: 10.1016/j.matlet.2020.129073
Li K., Liang J., Zhou J. Effects of WS2 and Cr3C2 addition on microstructural evolution and tribological properties of the self-lubricating wear-resistant CoCrFeNiMo composite coatings prepared by laser cladding // Optics & Laser Technology. 2023. V. 163. P. 109442. DOI: 10.1016/j.optlastec. 2023.109442
Domarov E., Chakin I., Cherepkov V. et al. Upgrated the extraction device of focused electron beam into the atmosphere // Proceedings of the 27th Russian Particle Accelerator Conference. 2021. P. 114 – 116. DOI: 10.18429/ jacow-rupac2021-frb03
Vorobev D., Domarov E., Fadeev S. et al. Accelerators of ELV series: Current status and further development // Proceedings of the 27th Russian Particle Accelerator Conference. 2021. P. 111 – 113. DOI: 10.18429/jacow-rupac2021-frb02
Bryazgin A. A., Kuksanov N. K., Salimov R. A. Industrial electron accelerators developed at the Budker Institute of Nuclear Physics, SB RAS (BINP) // Uspekhi Fizicheskih Nauk. 2018. V. 188, No. 06, P. 672 – 685. DOI: 10.3367/UFNr. 2018.03.038344
Ruktuev A. A., Lazurenko D. V., Ogneva T. S. et al. Structure and oxidation behavior of CoCrFeNiX (where X is Al, Cu, or Mn) coatings obtained by electron beam cladding in air atmosphere // Surface and Coatings Technology. 2022. V. 448. P. 128921. DOI: 10.1016/j.surfcoat.2022.12892
Okamoto H., Schlesinger M. E., Mueller E. M., Schlesinger M. E. ASM Handbook, V. 3. Alloy phase diagrams. Materials Park, Ohio: ASM International, 2016. 778 p.
Ko J. Y., Hong S. I. Microstructural evolution and mechanical performance of carbon-containing CoCrFeMnNi-C high entropy alloys // Journal of Alloys and Compounds. 2018. V. 743. P. 115 – 125. DOI: 10.1016/j.jallcom.2018.01.348
Stepanov N. D., Yurchenko N. Yu., Tikhonovsky M. A., Salishchev G. A. Effect of carbon content and annealing on structure and hardness of the CoCrFeNiMn-based high entropy alloys // Journal of Alloys and Compounds. 2016. V. 687. P. 59 – 71. DOI 10.1016/j.jallcom.2016.06.103
Chen P., Wu W., Liu H. et al. Metastable FeCrMnCo HEAs with the reinforcement of tungsten carbide fabricated by laser melting: Microstructure, mechanical properties and tribological behaviors // Materials Characterization. 2023. V. 206. P. 113397. DOI 10.1016/j.matchar.2023.113397
Liu L., Han T., Cao S. C. et al. Enhanced wearing resistance of carbide reinforced FeCoNiCrMn high entropy alloy prepared by mechanical alloying and spark plasma sintering // Materials Today Communications. 2022. V. 30. P. 103127. DOI 10.1016/j.mtcomm.2022.103127
Ye W., Xie M., Huang Z. et al. Microstructure and tribological properties of in-situ carbide/CoCrFeNiMn high entropy alloy composites synthesized by flake powder metallurgy // Tribology International. 2023. V. 181. P. 108295. DOI: 10.1016/j.triboint.2023.108295
Liu L., Han T., Cao S. C. et al. Enhanced wearing resistance of carbide reinforced FeCoNiCrMn high entropy alloy prepared by mechanical alloying and spark plasma sintering // Materials Today Communications. 2022. V. 30. P. 103127. DOI: 10.1016/j.mtcomm.2022.103127
Tong Z., Liu H., Jiao J. et al. Laser additive manufacturing of CrMnFeCoNi high entropy alloy: Microstructural evolution, high-temperature oxidation behavior and mechanism // Optics & Laser Technology. 2020. V. 130. P. 106326. DOI: 10.1016/j.optlastec.2020.106326
Kim Y.-K., Joo Y.-A., Kim H. S., Lee K.-A. High temperature oxidation behavior of Cr – Mn – Fe – Co – Ni high entropy alloy // Intermetallics. 2018. V. 98. P. 45 – 53. DOI: 10.1016/ j.intermet.2018.04.006
Wei Y., Fu Y., Pan Z. et al. Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review // International Journal of Minerals, Metallurgy and Materials. 2021. V. 28, No. 6. P. 915 – 930. DOI: 10.1007/ s12613-021-2257-7
Chang F., Cai B., Zhang C. et al. Thermal stability and oxidation resistance of FeCrxCoNiB high-entropy alloys coatings by laser cladding // Surface and Coatings Technology. 2019. V. 359. P. 132 – 140. DOI: 10.1016/j.surfcoat.2018.12.072
Zhang L., Huang Z., Chang L., Zheng Q. Comparison of oxidation behaviors of Cr7C3 at 1173 K and 1273 K // Materials Research Express. 2017. V. 4, No. 10. P. 106508. DOI: 10.1088/2053-1591/aa8d36
DOI: https://doi.org/10.30906/mitom.2024.7.13-21
© Издательский дом «Фолиум», 1998–2025