

Влияние различных режимов термической обработки на структуру, механические и термические свойства стали 51CrV4
Аннотация
Исследовано влияние различных режимов термической обработки на структуру, механические и термические свойства стали 51CrV4. Сталь закаливали в двух разных средах охлаждения, а затем подвергали отпуску при различным температурах. После всех режимов термообработки методом SEM-EDS анализировали структуру и измеряли твердость стали, а также методом ксеноновой вспышки определяли ее термические свойства. По результатам экспериментов рекомендовано использовать закалку в масляной ванне при комнатной температуре с последующим низким или средним отпуском. Такой режим термической обработки обеспечивает увеличение температуропроводности и коэффициента теплопроводности при небольшом снижении твердости стали 51CrV4.
Ключевые слова
Литература
Zordao L.H., Oliveira V.A., Totten G.E., Canale L.C.F. Quenching power of aqueous salt Solution // International Journal of Heat and Mass Transfer. 2019. V. 140 P. 807-818. (DOI 10.1016/j.ijheatmasstransfer.2019.06.036).
Civi C., Yurddaskal M., Atik E., Celik E. Quenching and tempering of 51CrV4 (SAE-AISI 6150) steel via medium and low frequency induction // Materials Testing. 2018. V. 60 P. 614-618. (DOI 10.3139/120.111196).
Göken J., Valentin M.M., Steinhoff K., Golovin I.S., Ivleva T.V., Flejszar A., Riehemann W. Mechanical spectroscopy study of thermo-mechanically treated 51CrV4 steel // Materials Science and Engineering A. 2009. V. 521–522. P. 335-339. (DOI 10.1016/j.msea.2008.09.151).
Zhang L., Gong D., Li Y., Wang X., Red X., Wang E. Effect of quenching conditions on the microstructure and mechanical properties of 51CrV4 spring steel // Metals. 2018. V. 8. P. 1056. (DOI 10.3390/met8121056).
Lai C., Huanh W., Li S., Liu T., Lv R., Tang X., Yu J. Effects of quenching and tempering heat treatment on microstructure, mechanical properties, and fatigue crack growth behavior of 51CrV4 spring steel // Materials Research Express. 2021. V. 8. P. 096514. (DOI 10.1088/2053-1591/ac22c6).
Bajželj A., Burja J. Influence of austenitisation time and temperature on grain size and martensite start of 51CrV4 spring steel // Crystals. 2022. V. 12. P. 1449. (DOI 10.3390/cryst12101449).
Nasiri Z., Mirzadeh H. Spheroidization heat treatment and intercritical annealing of low carbon steel // Journal of Mining and Metallurgy, Section B: Metallurgy. 2019. V. 55. P. 405-411. (DOI 10.2298/JMMB180813033N).
Senčić B. Leskovšek V. Fracture toughness of the vacuum-heat-treated spring steel 51CrV4 // Materials and Technology. 2011. V. 45. P. 67-73.
Belomytsev M.Yu. Analysis of the anomalous effect of heat treatment on the structure and phase transformations in high-chromium tool steel // Metal Science and Heat Treatment. 2023. V. 65. P. 410-414. (DOI 10.1007/s11041-023-00948-5).
Htun M.S., Kyaw S.T., Lwin K.T. Effect of heat treatment on microstructures and mechanical properties of spring steel // Journal of Metals, Materials and Minerals. 2008. V. 18. P. 191-197.
Hong-ying L., Mao-sheng H., De-wang L., Jun L., De-chao X. Effect of cyclic heat treatment on microstructure and mechanical properties of 50CrV4 steel // Journal of Central South University. 2015. V. 22. P. 409-415. (DOI 10.1007/s11771-015-2536-4).
Hauserova D., Dlouhy J., Kotous J. Structure refinement of spring steel 51CrV4 after accelerated spheroidisation // Archives of Metallurgy and Materials. 2017. V. 62. P. 1473-1477. (DOI 10.1515/amm-2017-0228).
Šolić S., Senčić B., Leskovšek V. Influence of heat treatment on mechanical properties of 51CrV4 high strength spring steel // International Heat Treatment and Surface Engineering. 2013. V. 7. P. 92–98. (DOI 10.1179/1749514812Z.00000000040).
Chen R., Wang Z., Zhu F., Zhao H., Qin J., Zhong L. Effects of rare-earth micro-alloying on microstructures, carbides, and internal friction of 51CrV4 steels // Journal of Alloys and Compounds. 2020. V. 824 P. 153849. (DOI 10.1016/j.jallcom.2020.153849).
Stamenković U., Marković I., Mladenović S., Stajić M. A study on the influence of austenitization temperature on the mechanical, thermal, and structural properties of 51CrV4 steel [in Serbian] // Technics – Belgrade, Serbia: Union of Engineers and Technicians of Serbia, Belgrade. 2024. V. 79. P. 55-61. (DOI 10.5937/tehnika2401055S).
EN ISO 683-2:2018. Heat-treatable steels, alloy steels and free-cutting steels — Part 2: Alloy steels for quenching and tempering. Link: https://www.iso.org/obp/ui/#iso:std:iso:683:-2:ed-2:v1:en.
ASTM E384-22. Standard Test Method for Microindentation Hardness of Materials. Link: https://www.astm.org/e0384-22.html.
Moravec J., Nováková I., Vondráˇcek J. Influence of Heating Rate on the Transformation Temperature Change in Selected Steel Types // Manufacturing Technology. 2020. V. 20. P. 217–222. (DOI 10.21062/mft.2020.024).
Zhang X. Xia D. Wang S. Effect of austenitizing temperature on the quenching microstructure and properties of 51CrV4 // Materials Science Forum. 2019. V. 944. P. 357-363. (DOI 10.4028/www.scientific.net/MSF.944.357).
Nurnberger F., Grydin O., Schaper M., Bach F.-W., Koczurkiewicz B., Milenin A. Microstructure transformations in tempering steels continuous cooling from hot forging temperatures // Steel Research International. 2010. V. 81. P. 224-233. (DOI 10.1002/srin.200900132).
Kawulok R., Schindler I., Kawulok P., Rusz S., Opċla P., Mališ M., Vašek Z., Subíková M., Vá;ová P. Effect of plastic deformation on CCT diagram of spring steel 51CrV4 // 24th International Conference on Metallurgy and Materials: 3rd–5th June 2015. Conference proceedings. Brno. Czech Republic. P. 345-350.
Lakhtin Y. Engineering, physical metallurgy and heat-treatment - English translation from the Russian by Nicolas Weinstein, Second printing, Mir Publishers, Moscow, 1983.
Reed R.P., Clark A.F. Materials at low temperatures - American Society for Metals, Metals Park, Ohio, 1983.
Wenzl H., Welter J.M. Electrical transport properties of pure metals and their influence by trace contamination // Zeitschrift Metallkunde (International Journal of MaterialsResearch). 1974. V. 65. P. 205-214.
Jo H., Kang M., Park G.-W., Kim B.-J., Choi C.Y., Park H.S., Shin S., Lee W., Ahn Y.-S., Jeon J.B. Effects of Cooling Rate during Quenching and Tempering Conditions on Microstructures and Mechanical Properties of Carbon Steel Flange // Materials (Basel). 2020. V. 13. P. 4186. (DOI 10.3390/ma13184186).
MacKenzie D.S., Graham G., Jankowski J. Effect of Contamination on the Cooling rate of Quench Oils // 6th International Quencing and Control of Distortion Conference: 9th–13th September 2012. Conference proceedings. Chicago. Illinois. USA, P. 239-245.
Hafenstein S., Werner E., Wilzer J., Theisen W., Weber S., Sunderkotter C., Bachmann M. Influence of temperature and tempering conditions on thermal conductivity of hot work tool steels for hot stamping applications // Steel Research International. 2015. V. 86. P. 1628-1635. (DOI 10.1002/srin.201400597).
Tritt T.M. Thermal Conductivity: Theory, Properties and Applications - Kluwer Academic, Plenum Publisher, New York, 2004.
Wilzer J., Ludtke F., Weber S., Theisen W. The influence of heat treatment and resulting microstructures on the thermophysical properties of martensitic steels // Journal of Material Science. 2013. V. 48. P. 8483-8492. (DOI 10.1007/s10853-013-7665-2).
Haiko O., Kaijalainen A., Pallaspuro S., Hannula J., Porter D., Liimatainen T., Komi J. The effect of tempering on the microstructure and mechanical properties of a Novel 0.4C press-hardening steel // Applied Sciences. 2019. V. 9. P. 4231. (DOI 10.3390/app9204231).
Berns H., Theisen W. Ferrous materials - steel and cast iron - 4th ed., Springer Verlag, Berlin 2008.
Sonderegger B., Kozeschnik E., Leitner H., Clemens H., Svoboda J., Fischer F.D., Staron P. Kinetics of precipitation in a complex hot-work tool steel // Steel Research International. 2010. V. 81. P. 64-73. (DOI 10.1002/srin.200900069).
DOI: https://doi.org/10.30906/mitom.2024.9.16-16
© Издательский дом «Фолиум», 1998–2025