Кристаллографические особенности фазовых превращений в высокопрочной низкоуглеродистой трубной стали
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Пышминцев И. Ю., Смирнов М. А. Структура и свойства сталей для магистральных трубопроводов. Екатеринбург: изд-во УМЦ УПИ. 2019. 242 с.
Столхейм Д. Д. Современные схемы легирования и практика производства высокопрочных сталей для магистральных нефтегазопроводов. Часть I // Металлург. 2013. № 11. P. 53 – 66.
Lobanov M. L. et al. Tensile deformation and fracture behavior of API-5L X70 line pipe steel // Materials. Multidisciplinary Digital Publishing Institute. 2022. V. 15, No. 2. P. 501.
Roccisano A. et al. Effect of TMCP rolling schedules on the microstructure and performance of X70 steel // Materials Characterization. 2021. V. 178. P. 111207.
Zhang G. et al. Development and production of heavy gauge X80 and high strength X90 pipeline steels utilizing TMCP / In: Optimized Cooling Process. American Society of Mechanical Engineers Digital Collection, 2014.
Пумпянский Д. А. и др. Влияние температуры чистовой прокатки при ТМО низкоуглеродистых высокопрочных трубных сталей на текстуру и сопротивление разрушению // МиТОМ. 2023. № 6. С. 8 – 15.
Lobanov M. L. et al. Effect of cooling rate on the structure of low-carbon low-alloy steel after thermomechanical controlled processing // Met Sci Heat Treat. 2019. V. 61, No. 1. P. 32 – 38.
Stalheim D. et al. Microstructure and mechanical property performance of commercial grade API pipeline steels in high pressure gaseous hydrogen // In: Proceedings of the 2010 8th International Pipeline Conference. 2010. V. 2. P. 529 – 537.
Ray R. K., Jonas J. J. Transformation textures in steels // International Materials Reviews. Taylor & Francis, 1990. V. 35, No. 1. P. 1 – 36.
Vervynckt S. et al. Modern HSLA steels and role of non-recrystallisation temperature // International Materials Reviews. Taylor & Francis, 2012. V. 57, No. 4. P. 187 – 207.
Pyshmintsev I. Yu. et al. Effect of bainite crystallographic texture on failure of pipe steel sheets made by controlled thermomechanical treatment // Metallurgist. 2016. V. 60, No. 3. P. 405 – 412.
Inagaki H. Transformation textures in control-rolled high tensile strength steels // Transactions of the Iron and Steel Institute of Japan. 1977. V. 17, No. 3. P. 166 – 173.
Yang X.-L. et al. Influences of crystallography and delamination on anisotropy of Charpy impact toughness in API X100 pipeline steel // Materials Science and Engineering: A. 2014. V. 607. P. 53 – 62.
Hara T. et al. Effects of microstructure and texture on DWTT properties for high strength line pipe steels / In: American Society of Mechanical Engineers Digital Collection, 2008. P. 245 – 250.
Joo M. S. et al. Experiments to separate the effect of texture on anisotropy of pipeline steel // Materials Science and Engineering: A. 2012. V. 556. P. 601 – 606.
Akhtar M. N. et al. Determination of non-recrystallization temperature for niobium microalloyed steel // Materials. Multidisciplinary Digital Publishing Institute. 2021. V. 14, No. 10. P. 2639.
Lobanov M. L. et al. Phase transformation crystallography in pipeline HSLA steel after TMCP // Metals. Multidisciplinary Digital Publishing Institute. 2023. V. 13, No. 6. P. 1121.
Lobanov M. L. et al. Effect of controlled thermomechanical processing routes on the structural and textural states of low-carbon low-alloy steel // Met. Sci. Heat Treat. 2023. V. 65. P. 485 – 493.
Kestens L. A. I., Nguyen-Minh T., Petrov R. H. The role of parent phase topology in double Young – Kurdjumow – Sachs variant selection during phase transformation in low-carbon steels // Metals. Multidisciplinary Digital Publishing Institute, 2022. V. 12, No. 6. P. 939.
Hutchinson B. et al. Texture in hot rolled austenite and resulting transformation products // Materials Science and Engineering: A. 1998. V. 257, No. 1. P. 9 – 17.
Kurdjumow G., Sachs G. Über den Mechanismus der Stahlhärtung // Zeitschrift fur Physik. 1930. V. 64. P. 325 – 343.
Nishiyama Z. X-ray investigation of the mechanism of the transformation from face-centred cubic lattice to body-centred cubic // Sci. Rep. Tohoku Imperial University. 1934. V. 23. P. 637.
Wassermann G. Ueber den Mechanismus der [alpha]- [gamma]-Umwandlung des Eisens. Verlag Stahleisen, 1935.
Greninger A. B., Troiano A. R. The mechanism of martensite formation // JOM. Springer, 1949. V. 1. P. 590 – 598.
Kraposhin V. et al. Microtwinning as a common mechanism for the martensitic and pearlitic transformations // Journal of Alloys and Compounds. 2013. V. 577. P. S30 – S36.
Liu M. et al. Crystal defect associated selection of phase transformation orientation relationships (ORs) // Acta Materialia. 2018. V. 152. P. 315 – 326.
Lobanov M. L. et al. Specific features of crystallographic texture formation in BCC–FCC transformation in extruded brass // Journal of Alloys and Compounds. 2021. V. 882. P. 160231.
Zhou W., Wang Z. L. Scanning Microscopy for Nanotechnology: Techniques and Applications. Springer Science & Business Media, 2007. 533 p.
Nolze G. et al. Tetragonality mapping of martensite in a high-carbon steel by EBSD // Materials Characterization. 2021. V. 175. P. 111040.
Zisman A. et al. Extraction of prior grain boundaries from interfaces of martensite based on particular statistics for inter-variant disorientations // Letters on Materials. 2018. V. 8. P. 436 – 441.
Cluff S. et al. Crystallographic reconstruction of parent austenite twin boundaries in a lath martensitic steel // Mater. Sci. Eng. IOP Publishing. 2018. V. 375, No. 1. P. 012012.
Gomes E., Kestens L. A. I. Fully automated orientation relationship calculation and prior austenite reconstruction by random walk clustering // Mater. Sci. Eng. IOP Publishing, 2015. V. 82, No. 1. P. 012059.
Huang C.-Y., Ni H.-C., Yen H.-W. New protocol for orientation reconstruction from martensite to austenite in steels // Materialia. 2020. V. 9. P. 100554.
Christian J. W. The Theory of Transformations in Metals and Alloys. Pergamon, 2002. 1216 p.
Platov S. I. et al. Mathematical model of the accelerated cooling of metal in thick-plate hot rolling // Metallurgist. 2022. V. 66, No. 3. P. 462 – 468.
Lobanov M. L. et al. Thermal effect of bainitic transformation in tube steel by accelerated cooling // Lett. Mater. Letters on Materials. 2018. V. 8, No. 3. P. 246 – 251.
Lobanov M. L. et al. Investigation of special misorientations in lath martensite of low-carbon steel using the method of orientation microscopy // Phys. Metals Metallogr. 2016. V. 117, No. 3. P. 254 – 259.
Rusakov G. M. et al. Special misorientations and textural heredity in the commercial alloy Fe – 3 % Si // Physics of Metals and Metallography. 2014. V. 115. No. 8. P. 775 – 785.
Suwas S., Ray R. K. Crystallographic Texture of Materials. London: Springer London, 2014.
Gong W. et al. Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel // Acta Materialia. 2013. V. 61, No. 11. P. 4142 – 4154.
Landheer H. et al. The role of crystal misorientations during solid-state nucleation of ferrite in austenite // Acta Materialia. 2009. V. 57, No. 5. P. 1486 – 1496.
Tomida T., Wakita M. Transformation Texture in Hot-rolled Steel Sheets and Its Quantitative Prediction // ISIJ International. 2012. V. 52, No. 4. P. 601 – 609.
DOI: https://doi.org/10.30906/mitom.2024.5.3-13
© Издательский дом «Фолиум», 1998–2024