

Исследование микроструктуры и свойств сплавов Zn – 1 % Mg – 0,1 % Dy и Zn – 1 % Mg – 0,1 % Mn после кручения под высоким давлением
Аннотация
Исследованы микроструктура, механические свойства и коррозионная стойкость перспективных медицинских сплавов Zn – 1 % Mg – 0,1 % Dy и Zn – 1 % Mg – 0,1 % Mn после кручения под высоким давлением (КВД). Показано, что КВД способствует формированию в обоих сплавах ультрамелкозернистой структуры с размерами зерна α-Zn 450 – 700 нм, измельчению зернограничной магниевой фазы до наноразмеров и выделению частиц, богатых Mn и Dy. Такое измельчение структуры способствует одновременному росту прочности и пластичности сплавов без изменения их коррозионной стойкости. При этом скорость коррозии сплавов как до, так и после КВД не превышает 0,35 мм/год.
Ключевые слова
Литература
Hussain M., Khan S. M., Al-Khaled K. et al. Performance analysis of biodegradable materials for orthopedic applications // Mater. Today Commun. 2022. V. 31. Art. 103167. DOI: 10.1016/j.mtcomm.2022.103167
Li M., Jiang M., Gao Y. et al. Current status and outlook of biodegradable metals in neuroscience and their potential applications as cerebral vascular stent materials // Bioact. Mater. 2022. V. 11. P. 140 – 153. DOI: 10.1016/j.bioactmat. 2021.09.025
Yusop A. H. M., Sarian M. N., Januddi F. S., Nur H. Drug-device systems based on biodegradable metals for bone applications: Potential, development and challenges // Biocybern. Biomed. Eng. 2023. V. 43, Is. 1. P. 42 – 57. DOI: 10.1016/ j.bbe.2022.11.002
Nouri A., Shirvan A. R., Li Y., Wen C. Biodegradable metallic suture anchors: A review // Smart Materials in Manufacturing. 2023. V. 1. Art. 100005. DOI: 10.1016/j.smmf. 2022.100005
Anisimova N., Kiselevskiy M., Martynenko N. et al. Anti-tumour activity of alloys Mg – 6 % Ag and Mg – 10 % Gd in two microstructural states in mice with inoculated melanoma // Mater. Sci. Eng. C. 2021. V. 130. Art. 112464. DOI: 10.1016/j.msec.2021.112464
Yusop A. H. M., Daud N. M., Nur H. et al. Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for use as temporary medical implants // Sci. Rep. 2015. V. 5. Art. 11194. DOI: 10.1038/srep11194
Supardi A., Willy S., Hikmawati D. Synthesis and characterization of Zn – Mg alloys as biodegradable materials // Key Eng. Mater. 2020. V. 860. P. 205 – 212. DOI: 10.4028/ www.scientific.net/KEM.860.205
Virtanen S. Biodegradable Mg and Mg alloys: corrosion and biocompatibility // Mater. Sci. Eng. B. 2011. V. 176. P. 1600 – 1608. DOI: 10.1016/j.mseb.2011.05.028
Ji C., Ma A., Jiang J. et al. Effects of rolling processing on the microstructures, mechanical properties and strain softening behavior of biodegradable Zn – 0.06Mg alloy // J. Mater. Process. Technol. 2024. V. 29. P. 170 – 180. DOI: 10.1016/ j.jmrt.2024.01.166
Li H., Xie X., Zheng Y. et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr // Sci. Rep. 2015. V. 5. Art. 10719. DOI: 10.1038/ srep10719
Xu Z., Liu H., Hu G. et al. Developing Zn – 1.5 Mg alloy with simultaneous improved strength, ductility and suitable biodegradability by rolling at room temperature // Acta Metall. Sin. (Engl. Lett.). 2023. V. 36. P. 1833 – 1843. DOI: 10.1007/ s40195-023-01581-0
Dambatta M. S., Izman S., Kurniawan D., Hermawan H. Processing of Zn – 3Mg alloy by equal channel angular pressing for biodegradable metal implants // Journal of King Saud University – Science. 2017. V. 29, Is. 4. P. 455 – 461. DOI: 10.1016/j.jksus.2017.07.008
Valiev R. Z., Zhilyaev A. P., Langdon T. G. Bulk Nanostructured Materials: Fundamentals and Applications. Hoboken, NJ: John Wiley & Sons, 2014.
Zhang S., Kang L., Dai X. et al. Manganese induces tumor cell ferroptosis through type-I IFN dependent inhibition of mitochondrial dihydroorotate dehydrogenas // Free Radical Biology and Medicine. 2022. V. 193, Part 1. P. 202 – 212. DOI: 10.1016/j.freeradbiomed.2022.10.004
Kostova I., Stefanova T. Synthesis, characterization and cytotoxic/cytostatic activity of La(III) and Dy(III) complexes // J. Trace Elem. Med. Biol. 2010. V. 24. P. 7 – 13. DOI: 10.1016/j.jtemb.2009.06.004
Feyerabend F., Fischer J., Holtz J. et al. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines // Acta Biomater. 2010. V. 6. P. 1834 – 1842. DOI: 10.1016/j.actbio. 2009.09.024
Martynenko N., Anisimova N., Rybalchenko O. et al. Structure, biodegradation, and in vitro bioactivity of Zn – 1 % Mg alloy strengthened by high-pressure torsion // Materials. 2022 V. 15. Art. 9073. DOI: 10.3390/ma15249073
Huang H., Liu H., Wang L. et al. Multi-interactions of dislocations and refined microstructure in a high strength and toughness Zn – Mg – Mn alloy // J. Mater. Res. Technol. 2020. V. 9, Is. 6. P. 14116 – 14121. DOI: 10.1016/j.jmrt. 2020.09.126
Martynenko N., Anisimova N., Shinkareva M. et al. Features of bioactivity of Zn – 1% Mg – 0.1% Dy alloy strengthened by equal channel angular pressing // Biomimetics. 2023. V. 8, Is. 5. Art. 408. DOI: 10.3390/biomimetics8050408
Lou D., Wang L., Ren Y. et al. Textural evolution and improved ductility in Zn – 0.2Mg – 0.8Mn (wt.%) alloys at different extrusion temperatures // J. Alloys Compd. 2021. V. 860. Art. 158530. DOI: 10.1016/j.jallcom.2020.158530
Zhang X., Liu G., Jiang L. et al. Hierarchical structured Zn – Cu – Li alloy with high strength and ductility and its deformation mechanisms // Int. J. Plast. 2023. V. 169. Art. 103731. DOI: 10.1016/j.ijplas.2023.103731
Liu H., Ye L., Ren K. et al. Evolutions of CuZn5 and Mg2Zn11 phases during ECAP and their impact on mechanical properties of Zn – Cu – Mg alloys // J. Mater. Process. Technol. 2022. V. 21. P. 5032 – 5044. DOI: 10.1016/j.jmrt.2022.11.095
Niu J., Tang Z., Huang H. et al. Research on a Zn – Cu alloy as a biodegradable material for potential vascular stents application // Mater. Sci. Eng C. 2016. V. 69. P. 407 – 413. DOI: 10.1016/j.msec.2016.06.082
Luqman M., Ali Y., Zaghloul M. M. Y. et al. Grain refinement mechanism and its effect on mechanical properties and biodegradation behaviors of Zn alloys — A review // J. Mater. Res. Technol. 2023. V. 24. P. 7338 – 7365. DOI: 10.1016/ j.jmrt.2023.04.219
Cao M., Shi Z.-Z., Sun J.-L. et al. Three-stage degradation behavior and dealloying assisted galvanic corrosion mechanism of 300 MPa grade Zn – 2Cu – xLi (x = 0.2 – 0.8) alloys in simulated body fluid // Corros. Sci. 2024. V. 228. Art. 111818. DOI: 10.1016/j.corsci.2024.111818
Kalhor A., Rodak K., Tkocz M. et al. Microstructure, mechanical properties, and corrosion behavior of a biodegradable Zn – 1.7Mg – 1Ca alloy processed by KoBo extrusion // Mater. Sci. Eng. A. 2023. V. 887. Art. 145771. DOI: 10.1016/ j.msea.2023.145771
Liu S., Kent D., Doan N. et al. Effects of deformation twinning on the mechanical properties of biodegradable Zn – Mg alloys // Bioact. Mater. 2019. V. 4. P. 8 – 16. DOI: 10.1016/ j.bioactmat.2018.11.001
Yuan W., Xia D., Wu S. et al. A review on current research status of the surface modification of Zn-based biodegradable metals // Bioact. Mater. 2022. V. 7. P. 192 – 216. DOI: 10.1016/j.bioactmat.2021.05.018
DOI: https://doi.org/10.30906/mitom.2024.9.48-56
© Издательский дом «Фолиум», 1998–2025