Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Исследование микроструктуры и свойств сплавов Zn – 1 % Mg – 0,1 % Dy и Zn – 1 % Mg – 0,1 % Mn после кручения под высоким давлением

Н. С. Мартыненко, Д. Р. Темралиева, Н. Ю. Табачкова, О. В. Рыбальченко, Е. А. Лукьянова, А. В. Колтыгин, С. В. Добаткин

Аннотация


Исследованы микроструктура, механические свойства и коррозионная стойкость перспективных медицинских сплавов Zn – 1 % Mg – 0,1 % Dy и Zn – 1 % Mg – 0,1 % Mn после кручения под высоким давлением (КВД). Показано, что КВД способствует формированию в обоих сплавах ультрамелкозернистой структуры с размерами зерна α-Zn 450 – 700 нм, измельчению зернограничной магниевой фазы до наноразмеров и выделению частиц, богатых Mn и Dy. Такое измельчение структуры способствует одновременному росту прочности и пластичности сплавов без изменения их коррозионной стойкости. При этом скорость коррозии сплавов как до, так и после КВД не превышает 0,35 мм/год.


Ключевые слова


цинковые сплавы; кручение под высоким давлением; микроструктура; прочность; пластичность; коррозионная стойкость

Полный текст:

PDF

Литература


Hussain M., Khan S. M., Al-Khaled K. et al. Performance analysis of biodegradable materials for orthopedic applications // Mater. Today Commun. 2022. V. 31. Art. 103167. DOI: 10.1016/j.mtcomm.2022.103167

Li M., Jiang M., Gao Y. et al. Current status and outlook of biodegradable metals in neuroscience and their potential applications as cerebral vascular stent materials // Bioact. Mater. 2022. V. 11. P. 140 – 153. DOI: 10.1016/j.bioactmat. 2021.09.025

Yusop A. H. M., Sarian M. N., Januddi F. S., Nur H. Drug-device systems based on biodegradable metals for bone applications: Potential, development and challenges // Biocybern. Biomed. Eng. 2023. V. 43, Is. 1. P. 42 – 57. DOI: 10.1016/ j.bbe.2022.11.002

Nouri A., Shirvan A. R., Li Y., Wen C. Biodegradable metallic suture anchors: A review // Smart Materials in Manufacturing. 2023. V. 1. Art. 100005. DOI: 10.1016/j.smmf. 2022.100005

Anisimova N., Kiselevskiy M., Martynenko N. et al. Anti-tumour activity of alloys Mg – 6 % Ag and Mg – 10 % Gd in two microstructural states in mice with inoculated melanoma // Mater. Sci. Eng. C. 2021. V. 130. Art. 112464. DOI: 10.1016/j.msec.2021.112464

Yusop A. H. M., Daud N. M., Nur H. et al. Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for use as temporary medical implants // Sci. Rep. 2015. V. 5. Art. 11194. DOI: 10.1038/srep11194

Supardi A., Willy S., Hikmawati D. Synthesis and characterization of Zn – Mg alloys as biodegradable materials // Key Eng. Mater. 2020. V. 860. P. 205 – 212. DOI: 10.4028/ www.scientific.net/KEM.860.205

Virtanen S. Biodegradable Mg and Mg alloys: corrosion and biocompatibility // Mater. Sci. Eng. B. 2011. V. 176. P. 1600 – 1608. DOI: 10.1016/j.mseb.2011.05.028

Ji C., Ma A., Jiang J. et al. Effects of rolling processing on the microstructures, mechanical properties and strain softening behavior of biodegradable Zn – 0.06Mg alloy // J. Mater. Process. Technol. 2024. V. 29. P. 170 – 180. DOI: 10.1016/ j.jmrt.2024.01.166

Li H., Xie X., Zheng Y. et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr // Sci. Rep. 2015. V. 5. Art. 10719. DOI: 10.1038/ srep10719

Xu Z., Liu H., Hu G. et al. Developing Zn – 1.5 Mg alloy with simultaneous improved strength, ductility and suitable biodegradability by rolling at room temperature // Acta Metall. Sin. (Engl. Lett.). 2023. V. 36. P. 1833 – 1843. DOI: 10.1007/ s40195-023-01581-0

Dambatta M. S., Izman S., Kurniawan D., Hermawan H. Processing of Zn – 3Mg alloy by equal channel angular pressing for biodegradable metal implants // Journal of King Saud University – Science. 2017. V. 29, Is. 4. P. 455 – 461. DOI: 10.1016/j.jksus.2017.07.008

Valiev R. Z., Zhilyaev A. P., Langdon T. G. Bulk Nanostructured Materials: Fundamentals and Applications. Hoboken, NJ: John Wiley & Sons, 2014.

Zhang S., Kang L., Dai X. et al. Manganese induces tumor cell ferroptosis through type-I IFN dependent inhibition of mitochondrial dihydroorotate dehydrogenas // Free Radical Biology and Medicine. 2022. V. 193, Part 1. P. 202 – 212. DOI: 10.1016/j.freeradbiomed.2022.10.004

Kostova I., Stefanova T. Synthesis, characterization and cytotoxic/cytostatic activity of La(III) and Dy(III) complexes // J. Trace Elem. Med. Biol. 2010. V. 24. P. 7 – 13. DOI: 10.1016/j.jtemb.2009.06.004

Feyerabend F., Fischer J., Holtz J. et al. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines // Acta Biomater. 2010. V. 6. P. 1834 – 1842. DOI: 10.1016/j.actbio. 2009.09.024

Martynenko N., Anisimova N., Rybalchenko O. et al. Structure, biodegradation, and in vitro bioactivity of Zn – 1 % Mg alloy strengthened by high-pressure torsion // Materials. 2022 V. 15. Art. 9073. DOI: 10.3390/ma15249073

Huang H., Liu H., Wang L. et al. Multi-interactions of dislocations and refined microstructure in a high strength and toughness Zn – Mg – Mn alloy // J. Mater. Res. Technol. 2020. V. 9, Is. 6. P. 14116 – 14121. DOI: 10.1016/j.jmrt. 2020.09.126

Martynenko N., Anisimova N., Shinkareva M. et al. Features of bioactivity of Zn – 1% Mg – 0.1% Dy alloy strengthened by equal channel angular pressing // Biomimetics. 2023. V. 8, Is. 5. Art. 408. DOI: 10.3390/biomimetics8050408

Lou D., Wang L., Ren Y. et al. Textural evolution and improved ductility in Zn – 0.2Mg – 0.8Mn (wt.%) alloys at different extrusion temperatures // J. Alloys Compd. 2021. V. 860. Art. 158530. DOI: 10.1016/j.jallcom.2020.158530

Zhang X., Liu G., Jiang L. et al. Hierarchical structured Zn – Cu – Li alloy with high strength and ductility and its deformation mechanisms // Int. J. Plast. 2023. V. 169. Art. 103731. DOI: 10.1016/j.ijplas.2023.103731

Liu H., Ye L., Ren K. et al. Evolutions of CuZn5 and Mg2Zn11 phases during ECAP and their impact on mechanical properties of Zn – Cu – Mg alloys // J. Mater. Process. Technol. 2022. V. 21. P. 5032 – 5044. DOI: 10.1016/j.jmrt.2022.11.095

Niu J., Tang Z., Huang H. et al. Research on a Zn – Cu alloy as a biodegradable material for potential vascular stents application // Mater. Sci. Eng C. 2016. V. 69. P. 407 – 413. DOI: 10.1016/j.msec.2016.06.082

Luqman M., Ali Y., Zaghloul M. M. Y. et al. Grain refinement mechanism and its effect on mechanical properties and biodegradation behaviors of Zn alloys — A review // J. Mater. Res. Technol. 2023. V. 24. P. 7338 – 7365. DOI: 10.1016/ j.jmrt.2023.04.219

Cao M., Shi Z.-Z., Sun J.-L. et al. Three-stage degradation behavior and dealloying assisted galvanic corrosion mechanism of 300 MPa grade Zn – 2Cu – xLi (x = 0.2 – 0.8) alloys in simulated body fluid // Corros. Sci. 2024. V. 228. Art. 111818. DOI: 10.1016/j.corsci.2024.111818

Kalhor A., Rodak K., Tkocz M. et al. Microstructure, mechanical properties, and corrosion behavior of a biodegradable Zn – 1.7Mg – 1Ca alloy processed by KoBo extrusion // Mater. Sci. Eng. A. 2023. V. 887. Art. 145771. DOI: 10.1016/ j.msea.2023.145771

Liu S., Kent D., Doan N. et al. Effects of deformation twinning on the mechanical properties of biodegradable Zn – Mg alloys // Bioact. Mater. 2019. V. 4. P. 8 – 16. DOI: 10.1016/ j.bioactmat.2018.11.001

Yuan W., Xia D., Wu S. et al. A review on current research status of the surface modification of Zn-based biodegradable metals // Bioact. Mater. 2022. V. 7. P. 192 – 216. DOI: 10.1016/j.bioactmat.2021.05.018




DOI: https://doi.org/10.30906/mitom.2024.9.48-56


© Издательский дом «Фолиум», 1998–2025