Открытый доступ Открытый доступ  Ограниченный доступ Платный доступ или доступ для подписчиков

Анализ структуры и свойств трубного соединения из жаропрочного сплава HP40NbTi, полученного в режиме импульсной GTAW-сварки

С. Ю. Кондратьев, М. Д. Фукс

Аннотация


Методами световой и электронной микроскопии, рентгеноспектрального микроанализа исследованы микроструктура и фазовый состав трубного сварного соединения из сплава HP40NbTi на основе системы Fe – 25Cr – 35Ni, выполненного в режиме импульсной GTAW-сварки. Определены его кратковременные и длительные механические свойства. Установлено, что более равномерное температурное поле с пониженным уровнем температур, возникающее при импульсной сварке, по сравнению с полем при стандартной сварке, предотвращает активное развитие фазового превращения NbC ® G в сплаве HP40NbTi. Это способствует формированию более однородной структуры металла шва, большей равнопрочности различных зон сварного соединения и повышению его эксплуатационных свойств.


Ключевые слова


жаропрочные аустенитные сплавы; сварное соединение; импульсный режим сварки GTAW; микроструктура; фазовый состав; G-фаза; механические свойства

Полный текст:

PDF

Литература


Garbiak M., Jasinski W., Piekarski B. Materials for reformer furnace tubes. History of evolution // Arch. Foundry Eng. 2011. V. 11, Is. 2. P. 47 – 52.

Tawancy H. M., Ul-Hamid A., Mohammed A. I., Abbas N. M. Effect of materials selection and design on the performance of an engineering product — An example from petrochemical industry // Mater. Des. 2007. V. 28, Is. 2. P. 686 – 703.

Tillack D. J., Guthrie J. E. Wrought and Cast Heat-Resistant Stainless Steels and Nickel Alloys for the Refining and Petrochemical Industries / Nickel Development Institute, Toronto, Technical Series, 1998. No. 10. P. 71 – 85.

Hu B., Chen X., Liu C. et al. Study on microstructure and properties of centrifugal casting 35Cr45NiNb + MA furnace tubes during service // Mater. High Temp. 2019. V. 36, Is. 6. P. 489 – 498.

Borjali S., Allahkaram S. R., Khosravi H. Effects of working temperature and carbon diffusion on the microstructure of high pressure heat-resistant stainless steel tubes used in pyrolysis furnaces during service condition // Mater. Des. 2012. V. 34. P. 65 – 73.

Kondrat’ev S. Y., Anastasiadi G. P., Ptashnik A. V., Petrov S. N. Kinetics of the high-temperature oxidation of heat-resistant statically and centrifugally cast HP40NbTi alloys // Oxid. Met. 2019. V. 91, Is. 1 – 2. P. 33 – 53.

Kondrat’ev S. Yu., Anastasiadi G. P., Petrov S. N., Ptashnik A. V. Kinetics of the formation of intermetallic phases in HP-type heat-resistant alloys at long-term high-temperature exposure // Metall. Mater. Trans. A. 2017. V. 48, Is. 1. P. 482 – 492.

Kondrat’ev S. Yu., Anastasiadi G. P., Ptashnik A. V., Petrov S. N. The mechanisms of scale and subsurface diffusion zone formation of heat-resistant HP40NbTi alloy at long-term high-temperature exposure // Materialia. 2019. V. 7. Art. 100427.

Kenik E. A., Maziasz P. J., Swindeman R. W. et al. Structure and phase stability in cast modified-HP austenite after long-term ageing // Scr. Mater. 2003. V. 49, Is. 2. P. 117 – 122.

Santos M., Guedes M., Baptista R. et al. Effect of severe operation conditions on the degradation state of radiant coins in pyrolysis furnaces // Eng. Failure Anal. 2015. V. 56. P. 194 – 203.

De Almeida L. H., Ribeiro A. F., Le May I. Microstructural characterization of modified 25Cr – 35Ni centrifugally cast steel furnace tubes // Mater. Charact. 2003. V. 49, Is. 3. P. 219 – 229.

Rudskoy A. I., Oryshchenko A. S., Kondrat’ev S. Yu. et al. Mechanisms and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 in long-term high-temperature holds. Part 1 // Met. Sci. Heat Treat. 2014. V. 56, Is. 1 – 2. P. 3 – 8.

Rudskoy A. I., Kondrat’ev S. Yu., Anastasiadi G. P. et al. Mechanism and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 under long-term high-temperature holds. Part 2 // Met. Sci. Heat Treat. 2014. V. 56, Is. 3 – 4. P. 124 – 130.

Guo J., Cao T., Cheng C. et al. Microstructure evolution and mechanical properties degradation of HPNb alloy after a five-year service // Mater. Res. Express. 2018. V. 5, Is. 4. Art. 046509.

Monobe L. S., Schхn C. G. Microstructural and fractographic investigation of a centrifugally cast 20Cr32Ni + Nb alloy tube in the ‘as cast’ and aged states // J. Mater. Res. Technol. 2013. V. 2, Is. 2. P. 195 – 201.

Ilman M. N., Kusmono. Analysis of material degradation and life assessment of 25Cr – 38Ni – Mo – Ti wrought alloy steel (HPM) for cracking tubes in an ethylene plant // Eng. Failure Anal. 2014. V. 42. P. 100 – 108.

Anwar Ul-Hamid, Hani M. Tawancy, Abdul-Rashid I. Mohammed, Nureddin M. Abbas. Failure analysis of furnace radiant tubes exposed to excessive temperature // Eng. Failure Anal. 2006. V. 13. P. 1005 – 1021.

Bonaccorsi L., Guglielmino E., Pino E. et al. Damage analysis in Fe – Cr – Ni centrifugally cast alloy tubes for reforming furnaces // Eng. Failure Anal. 2014. V. 36. P. 65 – 74.

Antonello Alvino, Daniela Lega, Francesco Giacobbe et al. Damage characterization in two reformer heater tubes after nearly 10 years of service at different operative and maintenance conditions // Eng. Failure Anal. 2010. V. 17, Is. 7 – 8. P. 1526 – 1541.

Ghatak A., Robi P. S. High-temperature tensile properties and creep life assessment of 25Cr35NiNb micro-alloyed steel // J. Mater. Eng. Perform. 2016. V. 25, Is. 5. P. 2000 – 2007.

Singhatham C., Eidhed K. The study of welding repair parameters of tube 35Cr – 45Ni – Nb alloy of the ethylene heating furnace // Appl. Mech. Mater. 2016. No. 848. P. 35 – 38.

Reihani A., Haghighi R. D. Failure analysis and weld ability improvement of 35 % Cr – 45 % Ni heat resistant alloy // Eng. Failure Anal. 2015. V. 52. P. 97 – 108.

Abbasi M., Park I., Ro Y. et al. Microstructural evaluation of welded fresh-to-aged reformer tubes used in hydrogen production plants // Eng. Failure Anal. 2018. V. 92. P. 368 – 377.

Mostafaei M., Shamanian M., Purmohamad H., Amini M. Increasing weldability of service-aged reformer tubes by partial solution annealing // J. Mater. Eng. Perform. 2016. V. 25. P. 1291 – 1303.

Allahkaram S. R., Borjali S., Khosravi H. Investigation of weldability and property changes of high pressure heat-resistant cast stainless steel tubes used in pyrolysis furnaces after a five-year service // Mater. Des. 2012. V. 33. P. 476 – 484.

Guglielmino E., Pino R., Servetto C., Sili A. Damage investigation on welded tubes of a reforming furnace // La Metallurgia Italiana. 2015. V. 107, Is. 1. P. 53 – 58.

Shinozaki K., Kuroki H., Nakao Y. et al. Deterioration of weldability of long-term aged HP heat-resistant cast steel containing Nb, Mo, and W // Weld. Int. 1999. V. 13, Is. 1. P. 39 – 48.

Guan K., Wang Q. Analysis of failed electron beam welds in ethylene cracking tubes // Eng. Failure Anal. 2011. V. 18, Is. 5. P. 1366 – 1374.

Reihani A., Razavi S. A., Abbasi E. et al. Failure analysis of welded radiant tubes made of cast heat-resisting steel // J. Fail. Anal. Prevent. 2013. V. 13, Is. 6. P. 658 – 665.

Guo J., Liu W., Li C., Zhang X. Microstructural characterization and mechanical behavior of Cr25Ni35NbM alloy dissimilar weld joint for application in a hydrogen reformer furnace // Metal. Res. Technol. 2020. V. 117, Is. 6. Art. 612.

Attarian M., Taheri A. K., Jalilvand S. et al. Microstructural and failure analysis of welded primary reformer furnace tube made of HP-Nb micro alloyed heat resistant steel // Eng. Failure Anal. 2016. V. 68. P. 32 – 51.

Kondrat’ev S. Yu., Fuks M. D., Frolov M. A., Petrov S. N. Analysis of the structure, phase composition and mechanical properties of a tubular welded joint from refractory alloy HP40NbTi // Met. Sci. Heat Treat. 2021. V. 62, Is. 11. P. 677 – 688.

Kondrat’ev S. Yu., Belikova Yu. A., Fuks M. D. et al. Effect of G-phase on the fracture behavior of a welded joint from refractory alloy HP40NbTi // Met. Sci. Heat Treat. 2022. V. 64, Is. 1 – 2. P. 34 – 44.

Kondrat’ev S. Yu., Slyusarenko A. V., Sokolov Yu. A., Fuks M. D. Mathematical modeling of the argon arc welding process. Part 1. Thermomechanical approach and model justification // Met. Sci. Heat Treat. 2023. V. 65, Is. 6. P. 338 – 344.

Kondrat’ev S. Yu., Slyusarenko A. V., Sokolov Yu. A., Fuks M. D. Mathematical modeling of the argon arc welding process. Part 2. Welding of HP40NbTi alloy pipelines // Met. Sci. Heat Treat. 2023. V. 65, Is. 6. P. 345 – 355.

Kondrat’ev S. Y., Anastasiadi G. P. Characterization of microstructure and chemical microinhomogeneity of HP40NbTi cast alloy after different crystallization rates // Metallogr. Microstruct. Anal. 2021. V. 10, Is. 5. P. 675 – 683.

Chen Q. Z., Thomas C. W., Knowles D. M. Characterisation of 20Cr32Ni1Nb alloys in as-cast and ex-service conditions by SEM, TEM and EDX // Mater. Sci. Eng. A. 2004. V. 374, Is. 1 – 2. P. 398 – 408.

Ecob R. C., Lobb R. C., Kohler V. L. The formation of G-phase in 20/25 Nb stainless steel AGR fuel cladding alloy and its effect on creep properties // J. Mater. Sci. 1987. V. 22, Is. 8. P. 2867 – 2880.

Knowles D. M., Thomas C. W., Keen D. J., Chen Q. Z. In service embrittlement of cast 20Cr32Ni1Nb components used in steam reformer applications // Int. J. Press. Vessel. Pip. 2004. V. 81, Is. 6. P. 499 – 506.

Abbasi M., Park I., Ro Y. et al. G-phase formation in twenty-years aged heat-resistant cast austenitic steel reformer tube // Mater. Charact. 2019. V. 148. P. 297 – 306.

Beattie H. J., Versnyder F. L. A new complex phase in a high-temperature alloy // Nature. 1956. V. 178. P. 208 – 209.

Bergman G., Waugh J. L. T. The crystal structure of the intermetallic compound M6Si7Cu16 // Acta Crystallographica. 1956. V. 9, Pt. 3. P. 214 – 217.

Villars P., Calvert L. D. (eds.) Pearson’s handbook of crystallographic data for intermetallic phases / 2nd ed., in 4 vols. Materials Park. Ohio: ASM International, 1991. V. 3. P. 4531 – 4532.

Chen Y., Dai X., Chen X., Yang B. The characterization of G-phase in Fe20Cr9Ni cast duplex stainless steel // Mater. Charact. 2019. V. 149. P. 74 – 81.

Ribeiro A. F., Borges R. M. T., de Almeida L. H. Phase transformation in heat resistant steels observed by STEM (NbTi)C – NiNbSi (G-Phase) // Acta Microscopica. 2002. V. 11, Is. 1. P. 59 – 63.

Swaminathan J., Guguloth K., Gunjan M. et al. Failure analysis and remaining life assessment of service exposed primary reformer heater tubes // Eng. Fail. Anal. 2008. V. 15, Is. 4. P. 311 – 331.

Piekarski B. Effect of Nb and Ti additions on microstructure, and identification of precipitates in stabilized Ni – Cr cast austenitic steels // Mater. Charact. 2001. V. 47, Is. 3 – 4. P. 181 – 186.

Ibaсez R. A. P., de Almeida Soares G. D., de Almeida L. H., Le May I. Effects of Si content on the microstructure of modified-HP austenitic steels // Mater. Charact. 1993. V. 30, Is. 4. P. 243 – 249.

Powell D. J., Pilkington R., Miller D. A. The precipitation characteristics of 20 % Cr/25 % Ni–Nb stabilised stainless steel // Acta Metallurgica. 1988. V. 36, Is. 3. P. 713 – 724.




DOI: https://doi.org/10.30906/mitom.2025.4.46-56


© Издательский дом «Фолиум», 1998–2025