

Микроструктура и механические свойства сварных соединений стали Hardox 400 (сталь 18ХГТ), полученных методом MAG
Аннотация
Исследованы микроструктура и механические свойства сварных соединений из стали Hardox 400 (российский аналог — сталь 18ХГТ), полученных полуавтоматической дуговой сваркой плавящимся электродом в среде защитного газа. Для сварки использована сварочная проволока ER 120 SG (Mn3Ni2CrMo) диаметром 1,2 мм. Проведены испытания сварного соединения на статическое растяжение. Показано, что трещины возникают за пределами зоны металла шва, а предел прочности при растяжении и энергия удара у сварного соединения выше, чем у основного металла. Наибольшая твердость (407 HV) наблюдается в области металла шва в основном из-за наличия мартенситной структуры. Затем твердость последовательно уменьшается в направлении зоны термического влияния и основного металла.
Ключевые слова
Литература
Gupta A., Sharma V., Kumar P., Thakur A. Investigating the effect of ferritic filler materials on the mechanical and metallurgical properties of Hardox 400 steel welded joints // Materials Today: Proceedings. 2021. V. 39. P. 1640 – 1646.
Mindivan H. Effects of combined diffusion treatments on the wear behaviour of Hardox 400 steel // Procedia Engineering. 2013. V. 68. P. 710 – 715.
Hacэsalihoglu I., Yэldэz F., Зelik A. Tribocorrosion behavior of plasma nitrided Hardox steels in NaCl solution // Tribol. Int. 2018. V. 120. P. 434 – 445.
Buglacki H., Smajdor M. Mechanical properties of abrasion-resistant Hardox 400 steel and their welded joints // Advances in Materials Science. 2003. V. 4. P. 67 – 71.
Nikitin V. N., Kiselev S. I., Popova T. N. et al. New weldable high-strength wear-resistant steel with a minimum tensile strength of 1050 N/mm2 // Metallurgist. 2005. V. 49. P. 18 – 20.
Ozturan A. B., Irsel G., Guzey B. N. Study of the microstructure and mechanical property relationships of gas metal arc welded dissimilar Hardox 450 and S355J2C+N steel joints // Mater. Sci. Eng. A. 2022. V. 856. Art. 143486.
Rubio-Ramirez C., Giarollo D. F., Mazzaferro J. E., Mazzaferro C. P. Prediction of angular distortion due GMAW process of thin-sheets Hardox 450в steel by numerical model and artificial neural network // J. Manuf. Process. 2021. V. 68. P. 1202 – 1213.
Frydman S., Konat Ј., Pкkalski G. Structure and hardness changes in welded joints of Hardox steels // Arch. Civ. Mech. Eng. 2008. V. 8. P. 15 – 27.
Altug M. Investigation of Hardox 400 steel exposed to heat treatment processes in WEDM // Journal of Polytechnic. 2019. V. 22. P. 237 – 244.
Yэlmaz T. Masif цzlь kaynak telleri ile birleєtirilen Hardox 400 зeliklerinin mekanik ve mikroyapэ цzellikleri / MSc thesis, Sakarya University, Turkey, 2010. 70 p.
Savas A. MIG kaynak yцntemi ile birleєtirilen Hardox 400, AISI 304L ve ST52 kalite зeliklerinin mikroyapэ ve mekanik цzelliklerinin incelenmesi / MSc thesis, Karabuk University, Turkey, 2021. 50 p.
Sirohi S., Pandey C., Goyal A. Characterization of structure-property relationship of martensitic P91 and high alloy ferritic austenitic F69 steel // Int. J. Press. Vessel. Pip. 2020. V. 188. Art. 104179.
Silva A. P., Wкgrzyn T., Szymczak T. et al. Hardox 450 weld in microstructural and mechanical approaches after welding at micro-jet cooling // Materials. 2022. V. 15. Art. 7118.
Altug M. Investigation of mechinability of welded joined Hhardox steel in WEDM // Eskiєehir Technical University Journal of Science and Technology A. Applied Sciences and Engineering. 2019. V. 20. P. 92 – 103.
Gуrka J. Assesmentt of thequality of abrasion resistant plates welded joint // J. Min. Metall. B. 2020. V. 56. P. 209 – 220.
Bhadesia H. K. D. H. Worked Examples in the Geometry of Crystals. London: The Institue of Metals, 1987. 113 p.
Bhadesia H. K. D. H., Svenson L. E. Mathematical Modeling of Weld Phenomena / ed. by H. Cerjak and K. E. Eastering. London: The Institute of Metals, 1993. P. 110 – 173.
Кондратьев С. Ю., Фукс М. Д., Фролов М. А., Петров С. Н. Анализ структуры, фазового состава и механических свойств трубного сварного соединения из жаропрочного сплава HP40NbTi // МиТОМ. 2020. № 11(785). С. 21 – 31. (Kondrat’ev S. Yu., Fuks M. D., Frolov M. A., Petrov S. N. Analysis of the structure, phase composition and mechanical properties of a tubular welded joint from refractory alloy HP40NbTi // Met. Sci. Heat Treat. 2021. V. 62, Is. 11. P. 677 – 688.)
Kondrat’ev S. Y., Gorynin V. I., Popov V. O. Optimization of the parameters of the surface-hardened layer in laser quenching of components // Weld. Int. 2012. V. 26, Is. 8. P. 629 – 632.
Svenson L. E. Control of Microstructures and Properties in Steel Arc Welds. USA: CRC Press, 1994. 256 p.
Timokhina I. B., Hodgson P. D., Pereloma E. V. Effect of microstructure on the stability of retained austenite in in transformation-induced-plasiticity steels // Metall. Mater. Trans. A. 2004. V. 35A. P. 2331 – 2341.
Seetharamann V. Deformation and martensitic transformation // Bull. Mater. Sci. 1984. V. 6. P. 703 – 716.
Kawata H., Honda Y. I., Nakano K. et al. Strengthening via grain refinement in lath martensite on low carbon Fe – 18Ni alloys // ISIJ Int. 2022. V. 62. P. 1502 – 1511.
Горынин В. И., Кондратьев С. Ю., Оленин М. И. Повышение сопротивляемости хрупкому разрушению перлитных и мартенситных сталей при термическом воздействии на морфологию карбидной фазы // МиТОМ. 2013. № 10(700). С. 22 – 29. (Gorynin V. I., Kondrat’ev S. Yu., Olenin M. I. Raising the resistance of pearlitic and martensitic steels to brittle fracture under thermal action on the morphology of the carbide phase // Met. Sci. Heat Treat. 2014. V. 55, Is. 9 – 10. P. 533 – 539.)
Sekban D. M., Aktarer S. M., Purcek G. Friction stir welding of low-carbon ship building steel plates: microstructure, mechanical properties and corrosion behavior // Metall. Mater. Trans. A. 2019. V. 50A. P. 4127 – 4140.
Husaini A. N., Hamza J. K., Sofyan S. E. Effects of welding on thechange of microstructure and Mechanical Properties of low carbon steel // IOP Conf. Series: Materials Science and Engineering. 2019. V. 523. Art. 012065.
Muda W. S. H., Nasir N. S. M., Mamat S., Jamian S. Effect of welding heat input on microstructure and mechanical properties at coarse grain heat affected zone of ABS grade a steel // ARPN J. Eng. Appl. Sci. 2015. V. 10. P. 9487 – 9495.
Boumerzoug Z., Derfouf C., Baudin T. Effect of welding on microstructure and mechanical properties of an industrial low carbon steel // Engineering. 2010. V. 2, Is. 7. P. 502 – 506.
Зolak Z., Ayan Y., Kahraman N. Characterization of the weld zone of Grade AH36 steel shipplate joined at the real marine conditions through underwater welding // J. Fac. Eng. Archit. Gaz. 2020. V. 35. P. 775 – 785.
Kaзar R., Emre H. E., Эюineri A. Ь., Najafigharehtapeh A. Farklэ зelik зiftinin birleєtirilmesinde kaynak yцntemlerinin mekanik цzelliklere etkisi // J. Fac. Eng. Archit. Gaz. 2018. V. 33. P. 255 – 265.
Al-Qawabah S., Mostafa A., Al-Rawajfeh A., Al-Qawabeha U. Effect of heat treatment on the grain size, microhardness and corrosion behavior of the cold-working tool steels AISI D2 and AISI O1 // Materiali in tehnologije / Materials and Technology. 2020. V. 54. P. 785 – 790.
Gu C., Lian J., Bao Y. et al. Numerical study of the effect of inclusions on the residual stress distribution in high-strength martensitic steels during cooling // Appl. Sci. 2019. V. 9, Is. 3. Art. 455.
Yang Y., Zhan D., Qiu G. et al. Inclusion evolution in solid steel during rolling deformation: a review // J. Mater. Res. Technol. 2022. V. 18. P. 5103 – 5115.
DOI: https://doi.org/10.30906/mitom.2025.4.57-61
© Издательский дом «Фолиум», 1998–2025