Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Влияние термической обработки на микроструктуру и механические свойства углеродистой стали с ультравысоким содержанием углерода

Лю Цинсо, Ли Цзиньмань, Чжан Синь Чжан, Цуй Тянь Цуй, Лю Хуаи Лю

Аннотация


Исследовано влияние параметров термической обработки (температуры 850 - 930 °С и скорости охлаждения 1 - 20 °C/мин) на микроструктуру и механические свойства углеродистой стали с 1,95 % (масс.) C. Определены температуры фазовых превращений в стали. Проведена рентгеновская дифрактометрия. Предложен режим термической обработки, способствующий исключению образования ледебурита в структуре стали и однородному распределению карбидных частиц в матрице.

Ключевые слова


steel; heat treatment; strength; impact toughness

Полный текст:

PDF

Литература


Putatunda S. K., Singar A. V., Tackett R. et al. Development of a high strength high toughness ausferritic steel // Materials Science & Engineering A. 2009. V. 513(11). P. 329 - 339.

Xu X. X., Yu Y., Cui W. L. et al. Ultra-high cycle fatigue behavior of high strength steel with carbide-free bainite/martensite complex microstructure // International Journal of Minerals Metallurgy and Materials. 2009. V. 16(3). P. 285 - 292.

Peral L. B., Zafra A., Rodrнguez C. et al. Evaluation of strength and fracture toughness of ferritic high strength steels under hydrogen environments // Procedia Structural Integrity. 2017. V. 5. P. 1275 - 1282.

Zeng D., Lu L., Gong Y. et al. Optimization of strength and toughness of railway wheel steel by alloy design // Materials & Design. 2016. V. 92(25). P. 998 - 1006.

Bhadeshia H., Honeycombe R. Steels Microstructure & Properties. 2017. P. 271 - 301.

Kaputkina L. M., Kaputkin D. E. Structure and phase transformation under quenching and tempering during heat and thermomechanical treatment of steels // Materials Science Forum. 2003. V. 426 - 432(3). P. 1119 - 1126.

Wang J., Shi H. S., Zhang J. G. High-strain-rate superplasticity of big grains in spray forming ultrahigh carbon steel contain 1.6 wt.% Al (UHCS-1.6Al) // Advanced Materials Research. 2012. V. 535 - 537. P. 639 - 642.

Ren D., Xiao F., Tian P. et al. Effects of welding wire composition and welding process on the weld metal toughness of submerged arc welded pipeline steel // International Journal of Minerals Metallurgy and Materials. 2009. V. 16(1). P. 65 - 70.

Zhen-li, Tang, Hai-tao et al. Effects of annealing temperature on the microstructure and properties of the 25Mn - 3Si - 3Al TWIP steel // International Journal of Minerals Metallurgy & Materials. 2009. V. 16(2). P. 154 - 158.

Lei L., Bin H., Sheng-gen L. Effect of Mo on mechanical properties of modified ultrahigh carbon steels after heat-treatment // Journal of Central South University. 2014. P. 1683 - 1688.

Ali M., Ulhaq E., Ibrahim A. et al. Increase in ductility of high carbon steel due to accelerated precipitation of cementite // Metal Science and Heat Treatment. 2017. V. 59(5 - 6). P. 294 - 296.

Zhang Z. L., Liu Y. N., Zhu J. W. et al. Processing and properties of ultrahigh-carbon (1.6 % C) steel // Materials Science & Engineering A. 2008. V. 483(1). P. 64 - 66.

Peng H., Song X., Gao A. et al. Microstructure and mechanical properties of the Al-added ultrahigh carbon steel // Materials Letters. 2005. V. 59(26). P. 3330 - 3332.

Popova E. V., Khomutova A. P., Yuzhakova I. V. et al. Removal of carbide net in steel ShKh15 by optimizing the mode of spheroidizing annealing // Metal Science and Heat Treatment. 2018. V. 59(11 - 12). P. 793 - 798.




DOI: https://doi.org/10.30906/mitom.2020.12.52-55


© Издательский дом «Фолиум», 1998–2024