Повышение ударной вязкости среднемарганцевой TRIP-стали 0,2 % C - 6 % Mn - 3 % Al за счет эволюции микроструктуры при термической обработке
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Lee S., Lee S. J., De Cooman B. C. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning // Scr. Mater. 2012. V. 65. P. 225 - 228.
Shi J., Sun X. J., Wang M. Q., Hui W. J. et al. Enhanced work-hardening behaviors and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite // Scr. Mater. 2010. V. 63. P. 815 - 818.
Nakada N., Mizutani K., Tsuchiyama T., Takaki S. Difference in transformation behavior between ferrite and austenite formations in medium manganese steel // Acta Mater. 2014. V. 65. P. 251 - 258.
Lee S., Lee S. J., Kumar S. S. et al. Localized deformation in multiphase ultra-fine-grained 6 Pct Mn transformation-induced plasticity steel // Metall. Mater. Trans. A. 2011. V. 42A. P. 3638 - 3651.
Li Z. C., Misra R. D. K., Ding H. et al. The significant impact of pre-strain on the structure-mechanical properties relationship in cold-rolled medium manganese TRIP steel // Mater. Sci. Eng. A. 2018. V. 712. P. 206 - 213.
Cao R. H., Liang J. H., Li F. et al. Intercritical annealing processing and a new type of quenching and partitioning processing, actualized by combining intercritical quenching and tempering, for medium manganese lightweight steel // Steel Res. Inter. 2019. V. 91, No. 1900335. P. 1 - 7.
Yan N., Di H. S., Misra R. D. K. et al. Enhancing austenite stability in a new medium-Mn steel by combining deep cryogenic treatment and intercritical annealing: An experimental and theoretical study // Mater. Sci. Eng. A. 2019. V. 753. P. 11 - 21.
Tsuchiyama T., Inoue T., Tobata J. et al. Microstructure and mechanical properties of a medium manganese steel treated with interrupted quenching and intercritical annealing // Scr. Mater. 2016. V. 122. P. 36 - 39.
Li Z. C., Zhang X. T., Mou Y. J. et al. The impact of intercritical annealing in conjunction with warm deformation process on microstructure, mechanical properties and TRIP effect in medium-Mn TRIP steels // Mater. Sci. Eng. A. 2019. V. 746. P. 363 - 371.
Qi X., Du L. X., Hu J., Misra R. D. K. Effect of austenite stability on toughness, ductility, and work-hardening of medium-Mn steel // Mater. Sci. Tech. 2019. V. 35. P. 2134 - 2142.
Su G., Gao X., Zhang D. et al. Impact of reversed austenite on the impact toughness of the high-strength steel of low carbon medium manganese // JOM. 2018. V. 70. P. 672 - 679.
Yamanaka S., Iwamoto T., Sawa T. Study on capturing transformation thermomechanical behaviour of TRIP steel during impact compression // Mater. Res. Innov. 2011. V. 15. P. 131 - 134.
Zhao K. M., Chang Y., Hu P., Wu Y. C. Influence of rapid cooling pretreatment on microstructure and mechanical property of hot stamped AHSS part // J. Mater. Process. Tech. 2016. V. 228. P. 68 - 75.
Li X. D., Chang Y., Wang C. Y. et al. Comparison of the hot- stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties // Mater. Sci. Eng. A. 2017. V. 679. P. 240 - 248.
Wu Z. Q., Tang Y. B., Chen W. et al. Exploring the influence of Al content on the hot deformation behavior of Fe - Mn - Al - C steels through 3D processing map // Vacuum. 2019. V. 159. P. 447 - 455.
Liang Z. Y., Li Y. Z., Huang M. X. The respective hardening contributions of dislocations and twins to the flow stress of a twinning-induced plasticity steel // Scr. Mater. 2016. V. 112. P. 28 - 31.
Han J., Nam J. H., Lee Y. K. The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel // Acta Mater. 2016. V. 113. P. 1 - 10.
Kamoutsi H., Gioti E., Haidemenopoulos Gregory N. et al. Kinetics of solute partitioning during intercritical annealing of a medium-Mn steel // Mater. Trans. A. 2015. V. 46A. P. 4841 - 4846.
Srivastava A. K., Bhattacharjee D., Jha G. et al. Microstructural and mechanical characterization of C - Mn - Al - Si cold-rolled TRIP-aided steel // Mater. Sci. Eng. A. 2007. V. 445 - 446A. P. 549 - 557.
Dijk N. H. V., Butt A. M., Zhao L. et al. Thermal stability of retained austenite in TRIP steels studied by synchrotron x-ray diffraction during cooling // Acta Mater. 2005. V. 53. P. 5439 - 5447.
Misra R. D. K., Challa V. S. A., Venkatsurya P. K. C. et al. Interplay between grain structure, deformation mechanisms and austenite stability in phase-reversion-induced nanograined/ultrafine-grained austenitic ferrous alloy // Acta Mater. 2015. V. 84. P. 339 - 348.
Li Z. C., Zhang X. T., Mou Y. J. et al. Design of an effective heat treatment involving intercritical hardening for high strength-high elongation of 0.2 C - 1.5 Al - (6 - 8.5) Mn - Fe TRIP steels: microstructural evolution and deformation behavior // Mater. Sci. Tech. 2020. V. 36. P. 500 - 510.
Wei X. C., Fu R. Y., Li L. Tensile deformation behavior of cold-rolled TRIP-aided steels over large range of strain rates // Mater. Sci. Eng. A. 2007. V. 465. P. 260 - 266.
Tian R., Li L., De Cooman B. C., Wei X. C., Sun P. Effect of temperature and strain rate on dynamic properties of low silicon TRIP steel // J. Iron Steel Res. Inter. 2006. V. 13. P. 51 - 56.
Kim M. T., Park T. M., Baik K.-Ho. et al. Crucial microstructural feature to determine the impact toughness of intercritically annealed medium-Mn steel with triplex-phase microstructure // Acta Mater. 2019. V. 164. P. 122 - 134.
Han J., Silva A. K., Ponge D. et al. The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel // Acta Mater. 2017. V. 122. P. 199 - 206.
Kuzmina M., Ponge D., Raabe D. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt.% medium Mn steel // Acta Mater. 2015. V. 86. P. 182 - 192.
Lacroix G., Pardoen T., Jacques P. J. The fracture toughness of TRIP-assisted multiphase steels // Acta Mater. 2008. V. 56. P. 3900 - 3913.
Neeraj T., Srinivasan R., Li J. Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding // Acta Mater. 2012. V. 60. P. 5160 - 5171.
Mou Y. J., Li Z. C., Zhang X. T. et al. Design of an effective heat treatment involving intercritical hardening for high strength-high elongation of 0.2C - 3Al - (6 - 8.5)Mn - Fe TRIP steels: microstructural evolution and deformation behavior // Metals. 2019. V. 9. P. 1275 - 1284.
Das A., Tarafder S. Geometry of dimples and its correlation with mechanical properties in austenitic stainless steel // Scr. Mater. 2008. V. 59. P. 1014 - 1017.
DOI: https://doi.org/10.30906/mitom.2021.1.27-34
© Издательский дом «Фолиум», 1998–2024