

Влияние исходной микроструктуры на механические свойства стали для сосудов высокого давления после термической обработки в межкритической области
Аннотация
Ключевые слова
Литература
Pous-Romero H., Lonardelli I., Cogswell D., Bhadeshia H. K. D. H. Austenite grain growth in a nuclear pressure vessel steel // Mater. Sci. Eng. A. 2013. V. 567. P. 72 - 79.
Luo X., Han L., Gu J. Study on austenitization kinetics of SA508 Gr.3 steel based on isoconversional method // Metals. 2016. V. 6, Is. 1. P. 1 - 8.
Suzuki K., Kurihara I., Sasaki T. et al. Application of high strength MnMoNi steel to pressure vessels for nuclear power plant // Nucl. Eng. Des. 2001. V. 206, Is. 2 - 3. P. 261 - 277.
Lee K.-H., Park S.-G., Kim M.-C., Lee B.-S. Cleavage fracture toughness of tempered martensitic Ni - Cr - Mo low alloy steel with different martensite fraction // Mater. Sci. Eng. A. 2012. V. 534. P. 75 - 82.
Park S.-G., Lee K.-H., Kim M.-C., Lee B.-S. Effects of boundary characteristics on resistance to temper embrittlement and segregation behavior of Ni - Cr - Mo low alloy steel // Mater. Sci. Eng. A. 2013. V. 561. P. 277 - 284.
Pickering E. J., Bhadeshia H. K. D. H. Macrosegregation and microstructural evolution in a pressure-vessel steel // Metall. Mater. Trans. A. 2014. V. 45, Is. 7. P. 2983 - 2997.
Yan G., Han L., Li C. et al. Characteristic of retained austenite decomposition during tempering and its effect on impact toughness in SA508 Gr.3 steel // J. Nucl. Mater. 2017. V. 483. P. 167 - 175.
Shi L., Yan Z., Liu Y. et al. Improved toughness and ductility in ferrite/acicular ferrite dual-phase steel through intercritical heat treatment // Mater. Sci. Eng. A. 2014. V. 590. P. 7 - 15.
Kang J., Wang C., Wang G. D. Microstructural characteristics and impact fracture behavior of a high-strength low-alloy steel treated by intercritical heat treatment // Mater. Sci. Eng. A. 2012. V. 553. P. 96 - 104.
Ahn Y. S., Kim H. D., Byun T. S. et al. Application of intercritical heat treatment to improve toughness of SA508 Cl.3 reactor pressure vessel steel // Nucl. Eng. Des. 1999. V. 194, Is. 2 - 3. P. 161 - 177.
Jiang J., Wu H., Liang J., Tang D. Microstructural characterization and impact toughness of a jackup rig rack steel treated by intercritical heat treatment // Mater. Sci. Eng. A. 2013. V. 587. P. 359 - 364.
Maleque M. A., Poon Y. M., Masjuki H. H. The effect of intercritical heat treatment on the mechanical properties of AISI 3115 steel // J. Mater. Process. Technol. 2004. V. 153 - 154. P. 482 - 487.
Movahed P., Kolahgar S., Marashi S. P. H. et al. The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite-martensite dual phase steel sheets // Mater. Sci. Eng. A. 2009. V. 518, Is. 1 - 2. P. 1 - 6.
Lуpez-Martнnez E., Vбzquez-Gуmez O., Vergara-Hernбndez H. J., Campillo B. Effect of initial microstructure on austenite formation kinetics in high-strength experimental microalloyed steels // Int. J. Min. Met. Mater. 2015. V. 22, Is. 12. P. 1304 - 1312.
Oh Y. S., Son I. H., Jung K. H. et al. Effect of initial microstructure on mechanical properties in warm caliber rolling of high carbon steel // Mater. Sci. Eng. A. 2011. V. 528, Is. 18. P. 5833 - 5839.
Rastegari H., Kermanpur A., Najafizadeh A. Effect of initial microstructure on the work hardening behavior of plain eutectoid steel // Mater. Sci. Eng. A. 2015. V. 632. P. 103 - 109.
Pickering E. J., Bhadeshia H. K. D. H. The consequences of macroscopic segregation on the transformation behavior of a pressure-vessel steel // J. Press. Vess. Technol. 2014. V. 136, Is. 3. No. 031403.
Moszner F., Povoden-Karadeniz E., Pogatscher S. et al. Reverse α' → γ transformation mechanisms of martensitic Fe - Mn and age-hardenable Fe - Mn - Pd alloys upon fast and slow continuous heating // Acta Mater. 2014. V. 72. P. 99 - 109.
Han J., Lee Y.-K. The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels // Acta Mater. 2014. V. 67. P. 354 - 361.
Diaz-Fuentes M., Iza-Mendia A., Gutierrez I. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior // Metall. Mater. Trans. A. 2003. V. 34, Is. 11. P. 2505 - 2516.
Hwang B., Yang G. K., Lee S. et al. Effective grain size and charpy impact properties of high-toughness X70 pipeline steels // Metall. Mater. Trans. A. 2005. V. 36. Is. 8. P. 2107 - 2114.
Cao W. Q., Godfrey A., Hansen N., Liu Q. Annealing behavior of nanostructured aluminum produced by cold rolling to ultrahigh strains // Metall. Mater. Trans. A. 2008. V. 40, Is. 1. P. 204 - 214.
Yan G., Han L., Li C. et al. Effect of macrosegregation on the microstructure and mechanical properties of a pressure-vessel steel // Metall. Mater. Trans. A. 2017. V. 48, Is. 7. P. 3470 - 3481.
Li C., Han L., Yan G. et al. Time-dependent temper embrittlement of reactor pressure vessel steel: Correlation between microstructural evolution and mechanical properties during tempering at 650 °C // J. Nucl. Mater. 2016. V. 480. P. 344 - 354.
Azuma M., Goutianos S., Hansen N. et al. Effect of hardness of martensite and ferrite on void formation in dual phase steel // Mater. Sci. Technol. 2013. V. 28, Is. 9 - 10. P. 1092 - 1100.
DOI: https://doi.org/10.30906/mitom.2021.2.10-19
© Издательский дом «Фолиум», 1998–2025