Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Влияние температур закалки и перераспределения на механические свойства стали 37MnSi5

Х. Р. Хазвинлу, А. Хонарбакш-Рауф

Аннотация


Исследовано влияние температуры закалки и последующего нагрева для перераспределения углерода между мартенситом и остаточным аустенитом на механические свойства стали 37MnSi5 (35ГС). Температура закалки составляла 210, 238, и 270 °C, температура перераспределения углерода 300, 400, и 450 °C. Получено оптимальное сочетание прочности и пластичности, превышающее уровень свойств стали после стандартной закалки с отпуском или бейнитной закалки.

Ключевые слова


температура закалки; перераспределение углерода; структура; механические свойства; Mn - Si-сталь; quenching temperature; redistribution of carbon; structure; mechanical properties; Mn - Si steel

Полный текст:

PDF

Литература


De Moor E., Lacroix S., Clarke A. J. et al. Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels // Metallurgical and Materials Transactions. 2008. V. 39A. P. 2586.

Nayak S. S., Anumolu R., Misra R. D. K. et al. Microstructure - hardness relationship in quenched and partitioned medium-carbon and high-carbon steels containing silicon // Materials Science and Engineering. 2008. V. 498A. P. 442.

Speer J., Matlock D. K., De Cooman B. C., Schroth J. G. Carbon partitioning into austenite after martensite transformation // Acta Materialia. 2003. V. 51. P. 2611.

Matlock D. K., Brautigam V. E., Speer J. G. Application of the quenching and partitioning (Q&P) process to a medium- carbon, high-Si microalloyed bar steel // Materials Science Forum. 2003. V. 426 - 432. P. 1089.

Chatterjee S., Bhadeshia H. K. D. H. TRIP-assisted steels: cracking of high-carbon martensite // Materials Science and Technology. 2006. V. 22. P. 645.

Lee C. G., Kim S. J., Lee T. H., Lee S. Effects of volume fraction and stability of retained austenite on formability in a 0.1 C - 1.5 Si - 1.5 Mn - 0.5 Cu TRIP-aided cold-rolled steel sheet // Materials Science and Engineering. 2004. V. 371A. P. 16.

Edmonds D. V., He K., Rizzo F. C. et al. Quenching and partitioning martensite A novel steel heat treatment // Materials Science and Engineering A. 2006. V. 438 - 440. P. 25.

Mahieu J., Maki J., De Cooman B. C., Claessens S. Phase transformation and mechanical properties of Si-free CMnAl transformation-induced plasticity-aided steel // Metallurgical and Materials Transaction. 2002. V. 33A. P. 2573.

Ghazvinloo H. R., Honarbakhsh-Raouf A. Influence of quenching / partitioning temperature on morphology of 37MnSi5 steel // Materials Science. 2017. V. 52. P. 572.

Koistinen D. P., Marburger R. E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels // Acta Metallurgica. 1959. V. 7. P. 59.

Lee S. J., Lee Y. K. Effect of austenite grain size on martensitic transformation of a low alloy steel // Materials Science Forum. 2005. V. 475 - 479. P. 3169.

Zhou S., Zhang K., Wang Y. et al. High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching - partitioning - tempering process // Materials Science and Engineering. 2011. V. A528. P. 8006.

Ghazvinloo H. R. Study on phase and microstructure transformation in quenching and partitioning process of a C - Mn - Si low alloy steel / Ph. D. Thesis in Materials Science, Semnan University. 2015.




DOI: https://doi.org/10.30906/mitom.2019.2.51-54


© Издательский дом «Фолиум», 1998–2024