Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Operando исследование структурных изменений в высокомарганцевой стали в условиях сухого трения

К. И. Эмурлаев, А. Ю. Огнев, И. А. Батаев

Аннотация


Проанализирована эволюция микроструктуры стали 110Г13Л в условиях фрикционного воздействия с использованием метода дифракции синхротронного излучения и последующего профильного анализа полученных дифракционных картин. Трение высокомарганцевой стали сопровождается накоплением дефектов кристаллической решетки, что выражается в изменении полуширины профилей дифракционных максимумов. Зафиксированные экспериментально дефекты структуры обусловлены увеличением микроискажений решетки аустенита и уменьшением размеров областей когерентного рассеяния. Показано, что фрикционное взаимодействие приводит к анизотропному сдвигу дифракционных максимумов аустенита, что указывает на повышение вероятности образования дефектов упаковки и снижение энергии дефектов упаковки. Явных признаков механически-индуцированных фазовых превращений не выявлено.

Ключевые слова


высокомарганцевая сталь; трение; дифракция синхротронного излучения; профильный анализ

Полный текст:

PDF

Литература


Yeleussizova A. A., Skakov M. K., Zhilkashinova A. M., Rofman O. V. Deformation twinning in hadfield steel // Advanced Materials Research. 2013. V. 772. P. 62 - 67 (DOI: 10.4028/www.scientific.net/AMR.772.62).

Иванов Ю. Ф., Алешина Е. А., Колубаев Е. А. и др. Закономерности формирования структуры поврехностного слоя стали Гадфильда при трении // Физическая мезомеханика. 2006. Т. 9. С. 83 - 90.

Gromov V. E., Ivanov Yu. F., Qin R. S. et al. Degradation of structure and properties of rail surface layer at long-term operation // Materials Science and Technology. 2017. V. 33. P. 1473 - 1478 (DOI: 10.1080/02670836.2017.1287983).

Rowe K. G., Bennett A. I., Krick B. A., Sawyer W. G. In situ thermal measurements of sliding contacts // Tribology International. 2013. V. 62. P. 208 - 214 (DOI: 10.1016/j.triboint.2013.02.028).

Matsuzaki Y., Yagi K., Sugimura J. In-situ fast and long observation system for friction surfaces during scuffing of steel // Wear. 2017. V. 386 - 387. P. 165 - 172 (DOI: 10.1016/j.wear.2017.06.013).

Lychagin D. V., Filippov A. V., Kolubaev E. A. et al. Dry sliding of Hadfield steel single crystal oriented to deformation by slip and twinning: Deformation, wear, and acoustic emission characterization // Tribology International. 2018. V. 119. P. 1 - 18 (DOI: 10.1016/j.triboint.2017.10.027).

Muramatsu Y., Okuyama M., Takahashi N. et al. Newly developed friction tester for in situ soft x-ray absorption measurements of frictional engine-oil/metals interfaces // Analytical Sciences. 2017. V. 33. P. 1465 - 1468 (DOI: 10.2116/analsci.33.1465).

Yagi K., Ebisu Y., Sugimura J. et al. In situ observation of wear process before and during scuffing in sliding contact // Tribology Letters. 2011. V. 43. P. 361 - 368 (DOI: 10.1007/s11249-011-9817-3).

Yagi K., Izumi T., Koyamachi J. et al. In situ observation of crystal grain orientation during scuffing process of steel surface using synchrotron x-ray diffraction // Tribology Letters. 2020. V. 68. P. 1 - 15 (DOI: 10.1007/s11249-020-01357-y).

Bataev I. A., Lazurenko D. V., Bataev A. A. et al. A novel operando approach to analyze the structural evolution of metallic materials during friction with application of synchrotron radiation // Acta Materialia. 2020. V. 196. P. 355 - 369 (DOI: 10.1016/j.actamat.2020.06.049).

Davies R., Burghammer M., Riekel C. An Overview of the ESRF's ID13 Microfocus Beamline (2006) (http://refhub.elsevier.com/S2214-7853(19)34151-3/h0080).

Warren B. E. X-ray studies of deformed metals // Progress in Metal Physics. 1959. V. 8. P. 147 - 202 (DOI: 10.1016/0502-8205(59)90015-2).

Emurlaev K. I., Bataev I. A., Lazurenko D. V. et al. Deformation-induced martensite transformation in AISI 321 stainless steel under dry sliding friction // Materials Today Proceedings. 2020. V. 25. P. 424 - 427 (DOI: 10.1016/j.matpr.2019.12.140).

Zhang W., Wu J., Wen Y. et al. Characterization of different work hardening behavior in AISI 321 stainless steel and Hadfield steel // Journal of Materials Science. 2010. V. 45. P. 3433 - 3437 (DOI: 10.1007/s10853-010-4369-8).

Rafaja D., Krbetschek C., Ullrich C. et al. Stacking fault energy in austenitic steels determined by using in situ x-ray diffraction during bending // Journal of Applied Crystallography. 2014. V. 47. P. 936 - 947 (DOI: 10.1107/S1600576714007109).




DOI: https://doi.org/10.30906/mitom.2021.12.54-58


© Издательский дом «Фолиум», 1998–2024