

Экспериментальный поиск химических составов сверхупругих титановых сплавов с повышенными функциональными свойствами
Аннотация
Ключевые слова
Литература
Carter D., Caler W., Spengler D., Frankel V. Fatigue behavior of adult cortical bone: the influence of mean strain and strain range // Acta Orthop. 1981. V. 52(5). P. 481 - 490.
Shabalovskaya S. On the nature of the biocompatibility and on the medical applications of NiTi shape memory alloys // Bio-Med. Mater. Eng. 1996. V. 6(4). P. 267 - 289.
Brailovski V., Prokoshkin S., Inaekyan K., Demers V. Functional properties of nanocrystalline, submicrocrystalline and polygonized Ti - Ni alloys processed by cold rolling and post- deformation annealing // J. Alloys Compd. 2011. V. 509(5). P. 2066 - 2075.
Khmelevskaya I., Trubitsyna I., Prokoshkin S. et al. Thermomechanical treatment of Ti - Ni-based shape memory alloys using severe plastic deformation // Mater. Sci. Forum. V. 426 - 432(3). 2003. P. 2765 - 2770.
Prokoshkin S., Brailovski V., Inaekyan K. et al. Thermomechanical treatment of TiNi intermetallic-based shape memory alloys // In: Shape memory alloys: properties, technologies, opportunities / ed. N. Resnina and V. Rubanik. Trans Tech Publ., Pfaffikon, Switzerland. 2015. P. 260 - 341.
Kim J., Kim H., Inamura T. et al. Shape memory characteristics of Ti - 22 Nb - (2 - 8) Zr (at.%) biomedical alloys // Mater. Sci. Eng. A. 2005. V. 403(1 - 2). P. 334 - 339.
Kim H., Sasaki T., Okutsu K. et al. Texture and shape memory behavior of Ti - 22Nb - 6Ta alloy // Acta Mater. 2006. V. 54(2). P. 423 - 433.
Buenconsejo P., Kim H., Hosoda H., Miyazaki S. Shape memory behavior of Ti - Ta and its potential as a high-temperature shape memory alloy // Acta Mater. 2009. V. 57(4). P. 1068 - 1077.
Fu J., Kim H., Miyazaki S. Effect of annealing temperature on microstructure and superelastic properties of a Ti - 18Zr - 4.5Nb - 3Sn - 2Mo alloy // J. Mech. Behav. Biomed. 2017. V. 65(1). P. 716 - 723.
Hosoda H., Hosoda N., Miyazaki S. Development and characterization of Ni-free Ti-base shape memory and superelastic alloys // Trans. Mat. Res. Soc. J. 2001. V. 26. P. 243 - 246.
Ahmed T., Rack H. Martensitic transformations in Ti - (16 - 26) at.% Nb alloys // J. Mater. Sci. 1996. V. 31. P. 4267 - 4276.
Kim H., Satoru H., Kim J. et al. Mechanical properties and shape memory behavior of Ti - Nb alloys // Mat. Trans. 2004. V. 45. P. 2443 - 2448.
Sheremetyev V., Brailovski V., Prokoshkin S. et al. Functional fatigue behavior of superelastic beta Ti - 22Nb - 6Zr (at.%) alloy for load-bearing biomedical applications // Mater. Sci. Eng. 2016. V. 58. P. 935 - 944.
Brailovski V., Prokoshkin S., Gauthier M. et al. Bulk and porous metastable beta Ti - Nb - Zr(Ta) alloys for biomedical applications // Mat. Sci. Eng. 2011. V. 31(3). P. 643 - 657.
Kim H., Fu J., Tobe H. et al. Crystal structure, transformation strain, and superelastic property of Ti - Nb - Zr and Ti - Nb - Ta alloys // Shape Memory Superelasticity. 2015. V. 1. P. 107 - 116.
Konopatsky A., Dubinskiy S., Zhukova Y. et al. Ternary Ti - Zr - Nb and quaternary Ti - Zr - Nb - Ta shape memory alloys for biomedical applications: Structural features and cyclic mechanical properties // Mat. Sci. Eng. 2017. V. A702. P. 301 - 311.
DOI: https://doi.org/10.30906/mitom.2019.6.3-9
© Издательский дом «Фолиум», 1998–2025