О гетерогенном зарождении при затвердевании

В. Я. Гольдштейн, В. Ю. Новиков

Аннотация


Проведен анализ влияния химической и структурной неоднородности расплава на гетерогенное зарождение при кристаллизации металлических сплавов. Возникновение в расплаве дальнего порядка в расплаве в области, прилегающей к подложке, дает основания полагать, что подложка должна стимулировать гетерогенное зарождение. Для объяснения экспериментальных данных, не согласующихся с теорией кристаллизации, предложен принципиально новый механизм зарождения, не требующего сопряжения решеток зародыша и подложки. В соответствии с ним, зародыши могут возникать в области неоднородности состава расплава вокруг подложки, которая абсорбирует атомы компонентов, понижающих температуру ликвидус. Этот механизм, в частности, впервые объясняет инициирование зарождения аустенита при модифицировании сталей фазами внедрения.

Ключевые слова


затвердевание; зарождение; центр кристаллизации; подложка; абсорбция; модифицирование

Полный текст:

PDF

Литература


Bramfitt B. L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron // Metall. Trans. 1970. V. 1. P. 1987 - 1995 (DOI: 10.1007s40962-16-0048-0).

Johnsson M., Bдckerud L., Sigworth K. G. Study of the mechanism of grain refinement of aluminum after additions of Ti- and B-containing master alloys // Metal. Mater. Trans. A, 1993. V. 24, P. 481 - 491 (DOI: 10.1007/BF02657335).

van der Eijk C., Walmsley J., Grong Ш., Klevan O. S. Grain refinement of fully austenitic stainless steels using a Fe - Cr - Si - Ce master alloy // Electric Furnace Conf. 2001. V. 59. P. 51 - 60.

Qiu F., Liu T.-S., Zhang X. et al. Application of nanoparticles in cast steel: An overview // China Foundry. 2020. V. 17. P. 111 - 126 (DOI: 10.1007/s41230-020-0037-z).

Park J. S., Park J. H. Effect of Mg - Ti deoxidation on the formation behavior of equiaxed crystals during rapid solidification of iron alloys // Steel Res.Int. 2014. V. 85. P. 1303 - 1309 (DOI: 10.1002/srin.201399203).

Qu T., Zhang C., Wang D. et al. Effect of Mg - Ti treatment on nucleationmechanism of TiN inclusions and ferrite // Metals. 2020. V. 10. No. 755 (DOI: 10.3390/met10060755).

Huisman W. J., Peters J. F., Zwanenburg M. J. et al. Layering of a liquid metal in contact with a hard wall // Nature. 1997. V. 390. P. 379 - 381 (DOI: 10.1038/37069).

Oh S. H., Kauffmann Y., Scheu C. et al. Ordered liquid aluminum at the interface with sapphire // Science. 2005. V. 310. P. 661 - 663 (DOI: 10.1126/science.1118611).

Ma S., Brown A. J., Yan R. et al. Atomistics of prenucleation layering of liquid metals at the interface with poor nucleants // Comm. Chem. 2019. V. 2. No. 1 (DOI: 10.1038/s42004-018-0104-1).

Oh S. H., Scheu C., Rьhle M. In-situ HRTEM studies of alumina-aluminum solid-liquid interfaces // Korean J. Electron Microscopy Special Issue. 2006. V. 1. P. 19 - 24.

Kauffmann Y., Oh S. H., Koch C. T. et al. Quantitativeanalysis of layering and in-plane structural ordering at an alumina-aluminum solid-liquid interface // Acta Mater. 2011. V. 59. P. 4378 - 4386 (DOI: 10.1916/j.actamat.2011.03.061).

Mochanty P. S., Gruzleski J. E. Mechanism of grain refinement in aluminum // Acta Metall. Mater. 1995. V. 43. P. 2001 - 2012 (DOI: 10.1016/0956-7151(94)00405-7).

Men H., Fan Z. Atomic ordering in liquid aluminum induced by substrates with misfits // Comp. Mater. Sci. 2014. V. 85. P. 1 - 7 (DOI: 10.1016/j.commatsci.2013.12.042).

Fang C. M., Men H., Fan Z. Effect of substrate chemistry on prenucleation // Metall. Mater. Trans. 2018. V. 49. P. 6231 - 6242 (DOI: 10.1007/s11661-018-4882-y).

Gandman M., Kauffmann Y., Kaplan W. D. Quantification of ordering at a solid-liquid interface using plasmon electron energy loss spectroscopy // Appl. Phys. Lett. 2015. V. 106, No. 051603 (DOI: 10.1063/1.4907617).

Men H., Fan Z. Molecular dynamic simulation of the atomic structure of aluminum solid-liquid interfaces // Mater. Res. Express. 2014. V. 1, No. 025705 (DOI: 10.1088/2053-1591/1/2/025705).

Wang D., Chang W., Shen Y. et al. The role of lattice mismatch in heterogeneous nucleation of pure Al on Al2O3 single-crystal substrates with different termination planes //j. Thermal Analysis Calorim. 2019. V. 1, No. 37. P. 791 - 797 (DOI: 10.1007/s10973-018-07990-z).

Ma S., Yan R., Jing T., Dong H. Substrate-induced liquid layering: A new insight into the heterogeneous nucleation of liquid metals // Metals. 2018. V. 8, No. 521 (DOI: 10.3390/met8070521).

Men H., Fan Z. Prenucleation induced by crystalline substrates // Metall. Mater. Trans. A. 2018. V. 49. P. 2766 - 2777 (DOI: 10.1007/s11661-018-4628-x).

Fan Z., Men H., Wang Y., Que Z. A new atomistic mechanism for heterogeneous nucleation in the systems with negative lattice misfit: Creating a 2D template for crystal growth // Metals. 2021. V. 11, No. 478 (DOI: 10.3390/met11030478).

Lekakh S. N., Ge J., Richards V. et al. Optimization of melt treatment for austenitic steel grain refinement // Metall. Mater. Trans. B. 2017. V. 48. P. 406 - 419 (DOI: 10.1007/s11663-16-0832-5).




DOI: https://doi.org/10.30906/mitom.2022.9.10-13


© Издательский дом «Фолиум», 1998–2024